Quartische Gleichung

Polynomgleichung
(Weitergeleitet von Biquadratische Gleichung)

Eine quartische Gleichung oder polynomiale Gleichung 4. Grades, traditionell auch biquadratische Gleichung genannt, hat die Form

mit Koeffizienten und aus einem Körper mit Charakteristik , wobei dann aus der -Algebra stammt.

Im Folgenden werden als Körper nur die reellen oder die komplexen Zahlen betrachtet.

Nach dem Fundamentalsatz der Algebra lässt sich die Gleichung bis auf die Reihenfolge eindeutig in die Form

bringen, wobei und die nicht notwendigerweise verschiedenen vier komplexen Lösungen der Gleichung sind.

Ist und , dann lässt sich die Gleichung durch Substitution auf eine quadratische Gleichung zurückführen. Heutzutage, insbesondere in der Schulmathematik, ist es üblich, nur diese Spezialform biquadratische Gleichung zu nennen,[1] obwohl Biquadrat traditionell eine allgemeinere Bedeutung hat.

Geschichte

Bearbeiten

Die erste geschlossene Lösung der quartischen Gleichung fand der italienische Mathematiker Lodovico Ferrari (1522–1565). Diese Lösung veröffentlichte sein Lehrer Gerolamo Cardano 1545 in dem Werk Ars magna de Regulis Algebraicis. Eine weitere Lösungsmethode mit unterschiedlichem Ansatz wurde von Leonhard Euler 1738 in Sankt Petersburg publiziert, in dem Bestreben, eine allgemeine Lösungsformel auch für Gleichungen höherer Grade zu finden. Dass dies unmöglich ist, wurde von Niels Henrik Abel 1824 bewiesen (Satz von Abel-Ruffini).

Lösungsformel und Beweis

Bearbeiten
 
Allgemeine Lösungsformel für die Gleichung  

Da die allgemeine Lösungsformel unübersichtlich ist, wird die allgemeine Gleichung schrittweise in speziellere, äquivalente Formen überführt. Die dabei vorgenommenen Transformationen der Variablen müssen am Ende an den Lösungen in umgekehrter Reihenfolge rückgängig gemacht werden.

Voraussetzung: Gegeben sei eine quartische Gleichung   mit   und  .

Aussage: Dann kann man ihre Lösungen auf algebraische Weise wie folgt angeben:[2]

Normalisieren und Reduzieren

Bearbeiten

Zunächst wird die Gleichung mit der Substitution

 

dahingehend vereinfacht, dass der kubische Koeffizient   verschwindet (Tschirnhaus-Transformation) und gleichzeitig der führende Koeffizient durch Division der gesamten Gleichung durch   zu   gesetzt wird.

Mit den Festlegungen

 

reduziert sich die Gleichung zu

 .

Am Ende der Rechnung werden die Nullstellen des Ausgangspolynoms als   zurückgewonnen. Im Folgenden kann also angenommen werden, dass der Koeffizient dritten Grades Null ist.

Fall, dass nur gerade Exponenten auftreten

Bearbeiten

Ist  , dann erhält man den Spezialfall einer (echten) biquadratischen Gleichung

 

und kann die Nullstellen als Quadratwurzeln in beiden Vorzeichenvarianten aus den Lösungen der durch die Substitution   gewonnenen quadratischen Gleichung

 

bestimmen.

Sind die Koeffizienten reell und  , so ist es sinnvoller, nicht direkt die dann komplexen Lösungen der quadratischen Gleichung in   zu bestimmen und daraus die Quadratwurzeln, sondern die Gleichung erst auf andere Art reell zu faktorisieren, wobei die zwei quadratischen Faktoren wieder reelle Koeffizienten haben:

 

Für jeden Faktor können jetzt wieder einzeln die Nullstellen bestimmt werden:

   
   

Allgemeiner Fall

Bearbeiten

Ist  , so versucht man, die Gleichung als Differenz zweier vollständiger Quadrate zu schreiben. Dabei werden komplexe Parameter   eingeführt. Die Darstellung als Differenz führt dann direkt zu einer Faktorisierung in quadratische Faktoren mit komplexen Koeffizienten:

 

Durch Vergleich mit

 

ergeben sich   und   sowie  .

Damit der zweite Teil der Differenz ein vollständiges Quadrat in   ist, muss die Diskriminante dieses quadratischen Terms verschwinden:

 
 

Dies ist eine kubische Gleichung in  .

Aus einer der Lösungen für   ergeben sich zwei quadratische Gleichungen in  , die zu insgesamt vier Lösungen für   bzw. dann   führen.

Zusammenfassung

Bearbeiten

Insgesamt werden folgende Rechenschritte durchgeführt:

 ,
 ,
  mit  
 
 .

Nun können die Nullstellen wie folgt berechnet werden:

 

und in der Variablen der ursprünglichen Gleichung

 .

Die Parameter   geben das in den zwei Quadratwurzeln zu wählende Vorzeichen an, alle vier Kombinationen von   und   sind nötig, um die vier Lösungen zu erhalten.

Zerlegung in quadratische Faktoren

Bearbeiten

Hier wird die Zerlegung in ein Produkt mit zwei quadratischen Faktoren

 

zurückgeführt auf die Lösung   der kubischen Gleichung

 .[3]

(Bei reellen Koeffizienten   und   gibt es ein reelles   mit  .)

Mit einer Lösung   dieser Gleichung errechnet sich direkt:

  (Sonderfall   siehe unten)
 
 
 [4]

Im Sonderfall  [5] ist die Lösung[6]

 
  (Falls   ist, ist die Ausgangsgleichung   zu lösen.)[7]
 
 

Beispiel 1: Von   kommt man auf die Gleichung 3. Grades

 .

Eine Lösung ist  . Daraus ergibt sich die Zerlegung:

 .

Beispiel 2: Von   kommt man auf die Gleichung 3. Grades

 .

Eine Lösung ist  . Daraus ergibt sich die Zerlegung:

  mit
 
 
 
 

Beispiel 3:  .

Hier ist   und  . Es liegt der Sonderfall   vor.

Beispiel 4:  

Hier errechnen sich die Werte   und   über die Nullstellen:

 
 
 
 

Ungewöhnliche Zerlegungen biquadratischer Gleichungen

Bearbeiten

Bei rein biquadratischen Gleichungen ohne ungerade Exponenten kommt man besser mit den obigen Gleichungen weiter.

 

Für   ergeben sich erstaunliche Zerlegungen, wenn   eine Quadratzahl ist:

 
  (s. o.)
 
 

und schließlich die gar nicht gewöhnlichen Zerlegungen mit nur ganzzahligen Koeffizienten

 
 

Hier bildet   ein pythagoreisches Tripel, wobei   als Koeffizient gar nicht auftritt. Dementsprechend sind auch die nächsten derartigen Zerlegungen

 
 
  usw.

Wegen der Zerlegung von   lässt sich sogar als Sonderfall ein „pythagoreisches Tripel“   definieren, obwohl es kein rechtwinkliges Dreieck ergibt, sondern nur zwei zusammenfallende Dreiecksseiten.

Weitere Spezialformen

Bearbeiten

B = 0 und D = 0

Bearbeiten

Diese in der Schulmathematik häufigste Art von quartischen Gleichungen lässt sich durch Substitution relativ einfach auf eine quadratische Gleichung zurückführen. Dazu substituiert man mit   und erhält:  . Diese kann man durch die quadratische Lösungsformel lösen. Man erhält die Lösungen  . Aus der Rücksubstitution folgt:

 
 

Diese rein quadratischen Gleichungen haben je zwei Lösungen:

 
 

In diesem Fall ist   eine Lösung der Gleichung. Dann kann man den Faktor  , also   ausklammern und erhält die Gleichung

 .

Die Lösungen der quartischen Gleichung sind dann   und die drei Lösungen der kubischen Gleichung

 .

Reelle Koeffizienten

Bearbeiten

Sind alle Koeffizienten reell, lassen sich Fallunterscheidungen für die möglichen Lösungen angeben. Dies beruht auf folgender Tatsache: Ist die nicht-reelle Zahl   mit   Nullstelle eines beliebigen Polynoms mit reellen Koeffizienten, so ist es auch die konjugiert komplexe Zahl   (Beweis). Bei der Zerlegung des zugehörigen Polynoms ergibt das Produkt der beiden Faktoren

 

ein quadratisches Polynom mit reellen Koeffizienten, nämlich  . Also lässt sich jedes Polynom mit reellen Koeffizienten unabhängig von seinem Grad in lineare und quadratische Faktoren mit reellen Koeffizienten zerlegen. Es gibt für die quartische Gleichung also drei Möglichkeiten:

  • Die Gleichung hat vier reelle Lösungen. Sie zerfällt in vier Linearfaktoren mit reellen Koeffizienten.
  • Die Gleichung hat zwei reelle und zwei konjugiert komplexe Lösungen. Sie zerfällt in zwei Linearfaktoren und einen quadratischen Faktor mit reellen Koeffizienten.
  • Die Gleichung hat zwei Paare konjugiert komplexer Lösungen. Sie zerfällt in zwei quadratische Faktoren mit reellen Koeffizienten.

Vier reelle Lösungen

Bearbeiten

Unter den Lösungen können einfache Lösungen oder solche mit einer Vielfachheit   oder   sein (Erläuterung).

Im Einzelnen gibt es diese Möglichkeiten:

  • eine Lösung mit Vielfachheit  
Beispiel:  , zerlegt  
hat die vierfache Lösung  .
  • eine Lösung mit Vielfachheit   und eine einfache Lösung
Beispiel:  , zerlegt  
hat die dreifache Lösung   und die einfache Lösung  .
  • zwei Lösungen, jeweils mit Vielfachheit  
Beispiel:  , zerlegt  
hat die zweifache Lösung   und die zweifache Lösung  .
  • eine Lösung mit Vielfachheit   und zwei einfache Lösungen
Beispiel:  , zerlegt  
hat die zweifache Lösung   und die einfachen Lösungen  .
  • vier einfache Lösungen
Beispiel:  , zerlegt  
hat die einfachen Lösungen  .

Zwei reelle und zwei konjugiert komplexe Lösungen

Bearbeiten

Auch hier kann die reelle Lösung mit Vielfachheit   auftreten. Es gibt also diese beiden Möglichkeiten:

  • eine reelle Lösung mit Vielfachheit   und zwei konjugiert komplexe Lösungen
Beispiel:  , zerlegt  
oder mit reellem quadratischem Faktor  
hat die zweifache Lösung   und die konjugiert komplexen Lösungen  .
  • zwei einfache reelle Lösungen und zwei konjugiert komplexe Lösungen
Beispiel:  , zerlegt  
oder mit reellem quadratischem Faktor  
hat die einfachen Lösungen   und die konjugiert komplexen Lösungen  .

Zwei Paare konjugiert komplexer Lösungen

Bearbeiten

Hier gibt es diese beiden Möglichkeiten:

  • zwei konjugiert komplexe Lösungen mit Vielfachheit  
Beispiel:  , zerlegt  
oder mit zwei reellen quadratischen Faktoren  
hat die zweifachen konjugiert komplexen Lösungen  .
  • zwei Paare einfacher konjugiert komplexer Lösungen
Beispiel:  , zerlegt  
oder mit zwei reellen quadratischen Faktoren  
hat die konjugiert komplexen Lösungen   und  .

Kompakte Formulierung für reellwertige Koeffizienten

Bearbeiten

Für den Fall reeller Koeffizienten kann man die Gleichung wie folgt lösen.[1] Gegeben sei eine Gleichung vierten Grades

 

mit reellen Koeffizienten   und  . Durch die Substitution

 

überführt man diese in die reduzierte Gleichung

 

mit reellen Koeffizienten   und  . Im Fall   ist diese Gleichung biquadratisch und somit leicht zu lösen. Im allgemeinen Fall   erhält man aus den Lösungen der reduzierten Gleichung durch Rücksubstitution die Lösungen der ursprünglichen Gleichung. Mittels der Koeffizienten der reduzierten Gleichung bildet man die sogenannte kubische Resolvente

 .

Die Lösungen der Gleichung vierten Grades hängen folgendermaßen mit den Lösungen der kubischen Resolvente zusammen:

Kubische Resolvente Gleichung vierten Grades
sämtliche Lösungen reell und positiv vier reelle Lösungen
sämtliche Lösungen reell, eine positiv und zwei negativ zwei Paare von zueinander komplex konjugierten Lösungen
eine positive reelle Lösung und zwei komplexe, zueinander konjugierte Lösungen zwei reelle und zwei konjugiert komplexe Lösungen

Die Lösungen der kubischen Resolvente seien  . Für jedes   sei   eine beliebige der beiden komplexen Wurzeln aus  . Dann erhält man die Lösungen der reduzierten Gleichung durch

 

wobei   so zu wählen ist, dass

 .

Durch die Rücksubstitution

 

erhält man die Lösungen der ursprünglichen Gleichung vierten Grades.

Siehe auch

Bearbeiten

Einzelnachweise

Bearbeiten
  1. a b Bronstein, Semendjajev: Taschenbuch der Mathematik. 22. Auflage, Verlag Harri Deutsch, Thun 1985, ISBN 3-87144-492-8.
  2. Frei nach Ferrari.
  3. Quelle: Lösungsformel von Joachim Mohr.
  4. Implementierbar als
    w = sqrt(a^2 - 4 * u)
    p = (a + w)/2
    q = ((b - u) * (w + a) - 2 * c)/(2 * w)
    s = (a - w)/2
    t = ((b - u) * (w - a) + 2 * c)/(2 * w)
  5. Quelle: kilchb.de.
  6. In diesem Fall ist das Schaubild der Parabel vierten Grades
     
    symmetrisch zu der Geraden mit der Gleichung
     .
    Die Lösung erhält man durch Substitution
     
    über die elementar lösbare Gleichung
     .
  7. kilchb.de.

Literatur

Bearbeiten
Bearbeiten