Akustooptischer Modulator

(Weitergeleitet von Bragg-Zelle)

Ein akustooptischer Modulator (AOM, auch Bragg-Zelle) ist ein optisches Bauelement, das einfallendes Licht in Frequenz und Ausbreitungsrichtung oder Intensität beeinflusst, moduliert. Hierzu wird in einem transparenten Festkörper mit Schallwellen ein optisches Gitter erzeugt. An diesem Gitter wird der Lichtstrahl gebeugt und gleichzeitig in seiner Frequenz verschoben.

Aufbau und Funktionsweise

Bearbeiten
 
Prinzip eines AOMs (Einsatz zur Amplitudenmodulation des abgelenkten Strahls)

Ein akustooptischer Modulator besteht traditionell aus einem durchsichtigen Quader (z. B. Quarzglas oder ein Kristall), in dem mittels eines Piezoschwingers Körperschall (Ultraschall) erzeugt wird. Gegenüber dem Piezoerreger befindet sich ein Schallabsorber, um Reflexionen und stehende Wellen zu vermeiden.

Weiterhin gibt es auch faseroptische akustooptische Modulatoren. Sie bieten geringere Einfügedämpfung, bessere Strahlqualität und eine leichtere Integration in faseroptische Systeme. Solche All-Fiber AOM's nutzen entlang der Faser laufende transversale oder longitudinale akustische Wellen. Letztere können z. B. ihrerseits im Faserkern befindliche Faser-Bragg-Gitter modulieren.[1]

Die Ablenkung des Lichts in einem traditionellen akustooptischen Modulator funktioniert nach dem Prinzip der Beugung von Licht an einem optischen Gitter. Das optische Gitter besteht aus den Dichteschwankungen der den Kristall durchlaufenden Schallwelle.

Die Schallwelle mit Frequenzen   von typischerweise 10 bis 2000 MHz bewirkt im Kristall eine periodische Änderung der Dichte und damit eine periodische Modulation des Brechungsindex. Der Abstand   dieser „Gitterlinien“ ist gleich der Wellenlänge   der Ultraschallwelle und lässt sich aus der Schallgeschwindigkeit   und der Schallfrequenz   berechnen zu

 .

Für den Kristall wird meist LiNbO3 oder PbMoO4 für sichtbares Licht und nahes Infrarot sowie Ge für mittleres Infrarot verwendet. Typische Schallgeschwindigkeiten in solchen Kristallen liegen zwischen 3700 und 4300 m/s. Eine Frequenz von 195 MHz ergibt eine Gitterkonstante von 19 bis 22 µm. Dies sind typische Werte. Der genaue Wert hängt von der verwendeten Ultraschallfrequenz und der Schallgeschwindigkeit des verwendeten Mediums ab.

Typischerweise ist der Querschnitt des einfallenden Lichtbündels deutlich größer als die räumliche Periode der Brechungsindexmodulation, und da die Lichtgeschwindigkeit sehr viel größer als die Schallgeschwindigkeit ist, kann man näherungsweise annehmen, dass das Licht eine statische Brechungsindexmodulation sieht und eine konstruktive Interferenz des Lichtes für die Braggwinkel   mit

 

erfährt, wobei   die Wellenlänge des Lichtes im Kristall und   die Periode der Brechungsindexmodulation sind.

Das gestreute Licht erfährt eine Doppler-Frequenzverschiebung mit der Frequenz   des Ultraschalls. Der Vorgang ähnelt der Reflexion an einem bewegten Spiegel.

Eine andere, dazu äquivalente Betrachtungsweise betrachtet die Schallwelle im Festkörper als Phononen, die mit den Photonen des Lichts wechselwirken. Die Ablenkung des Lichts kommt dadurch zustande, dass der Impuls der Phononen zum Impuls der Photonen vektoriell addiert wird:

 

Hierbei ist   das durch   dividierte Plancksche Wirkungsquantum und   der Wellenvektor der Photonen bzw. Phononen. In dieser Betrachtungsweise folgt aus der Energieerhaltung, dass sich durch die Wechselwirkung die Frequenz des Lichts um die Frequenz der Schallwelle ändert:

 

Hier ist   das Plancksche Wirkungsquantum und   die Frequenz des Lichts, also der Photonen. Der Ausdruck   bezeichnet die Frequenz der Schallwelle. Die Frequenz des Lichts wird also genau um die Frequenz der Schallwelle verschoben.

Die relative Frequenzverschiebung des Lichtes ist sehr klein, da die Ultraschall-Frequenz (≈ 107 … 109 Hz) wesentlich kleiner als die Frequenz des Lichts (≈ 1014 … 1015 Hz) ist. Sie ist jedoch für einige Anwendungen wesentlich.

Anwendungen

Bearbeiten
 
Ein AOM zur Frequenzverschiebung (hier 175 MHz) von Laserstrahlung (hier Nahinfrarot 700…1100 nm); Strahlweg: ovales Fenster, rechts: koaxialer HF-Anschluss

AOM werden zur Manipulation von Laserstrahlung verwendet. Die Anwendungen lassen sich folgendermaßen gliedern:

  • Ablenkung und Modulation
    • Elektrisch steuerbare Ablenkung eines Laserstrahls, z. B. für automatisches Justieren der Strahlposition. Im besten Fall hat das dafür verwendete Maximum erster Ordnung ( ) über 90 % der Strahlintensität; der Rest geht verloren (nicht abgelenkt oder höhere Ordnungen)
    • Amplitudenmodulation des Laserstrahls durch Ablenkung in einen Absorber. Dies beruht darauf, dass bei geringer Intensität der Schallwelle der abgelenkte Anteil des Strahls proportional zur Schallintensität ist.
    • Einbringen zeitlich periodischer Verluste in einen Laserresonator, zur aktiven Modenkopplung des Lasers, sorgt für gepulsten Betrieb.
  • Frequenzselektion

Siehe auch

Bearbeiten

Literatur

Bearbeiten
  • Naumann, Schröder: Bauelemente der Optik. Taschenbuch der technischen Optik. Fachbuchverlag Leipzig
  • Frank L. Pedrotti, Leno S. Pedrotti, Werner Bausch: Optik für Ingenieure. Grundlagen. Springer, Berlin
  • Helmbrecht Bauer: Lasertechnik: Grundlagen und Anwendungen. Vogel-Verlag, Würzburg

Einzelnachweise

Bearbeiten
  1. R. E. Silva, T. Tiess, M. Becker, T. Eschrich, M. Rothhardt, M. Jäger, A. A. P. Pohl, H. Bartelt: All-fiber 10 MHz acousto-optic modulator of a fiber Bragg grating at 1060 nm wavelength. In: Optics Express. Band 23, Nr. 20, 2015, S. 25972–25978, doi:10.1364/OE.23.025972 (englisch).
Bearbeiten
  • Acousto-optic Modulators in der Encyclopedia of Laser Physics and Technology (englisch)
  • Introduction to Acousto-Optics. (PDF; 237 kB) Brimrose Corporation of America, 2002, archiviert vom Original (nicht mehr online verfügbar) am 8. Oktober 2007; (englisch).
  • N. Zhang: Acousto-Optic Tunable Filters Spectrally Modulate Light. (PDF; 585 kB) Brimrose Corporation of America, 2011; (englisch).