Der Abbildungsgrad ist ein Hilfsmittel der nichtlinearen Analysis, um die Existenz von Lösungen nichtlinearer Gleichungen nachzuweisen. Mit seiner Hilfe kann man beispielsweise den brouwerschen Fixpunktsatz, den Satz von Borsuk-Ulam oder den jordanschen Kurvensatz beweisen. Im Endlichdimensionalen (für stetige Funktionen) bezeichnet man ihn als brouwerschen Abbildungsgrad; seine Erweiterung auf Banachräume (für kompakte Störungen der Identität) heißt leray-schauderscher Abbildungsgrad.
Der brouwersche Abbildungsgrad, benannt nach L. E. J. Brouwer, ordnet einer stetigen Funktion für offenes, beschränktes und gegebenes eine ganze Zahl zu. Entscheidend für die Anwendungen ist die Tatsache, dass die Gleichung bereits dann lösbar ist, wenn der Abbildungsgrad von null verschieden ist.
Verschwindet der Abbildungsgrad , so kann keine Aussage zur Lösbarkeit gemacht werden.
Ist mit so gilt Insbesondere ist der Abbildungsgrad durch die Werte auf eindeutig festgelegt.
Liegen und in derselben Zusammenhangskomponente von , so gilt Man schreibt daher auch kurz für , um anzudeuten, dass der Abbildungsgrad nicht von dem Punkt, sondern von der Komponente abhängt.
Seien und stetig und die beschränkten Zusammenhangskomponenten von sowie , dann gilt die leraysche Produktformel worin nur endlich viele Summanden von null verschieden sind.
Falls zusätzlich auf stetig differenzierbar ist und alle Punkte in regulär sind, das heißt, die Determinante der Jacobimatrix ist in diesen Punkten nicht null, so gilt Ist nicht stetig differenzierbar, dann kann man aufgrund der zweiten Eigenschaft eine Funktion wählen, die den gleichen Abbildungsgrad wie hat.
Sei wieder stetig auf und stetig differenzierbar auf , kein kritischer Punkt. Sei außerdem eine Schar stetiger Funktionen von nach mit und für alle wählen, hierbei bezeichnet den abgeschlossenen Ball vom Radius um Null. Dann existiert ein , so dass die Integralformel für alle gilt.
Der brouwersche Abbildungsgrad umfasst als Spezialfall die in der Funktionentheorie wichtige Umlaufzahl. Identifiziert man mit , so ist der brouwersche Abbildungsgrad auch für die komplexe Ebene definiert. Eine geschlossene Kurve kann man als stetiges Bild von verstehen. Mit wird der Einheitskreisring um den Punkt null bezeichnet. Das heißt, es existiert eine stetige und surjektive Abbildung . Ist nun , so ist aufgrund der Stetigkeit des Abbildungsgrades der Ausdruck für alle stetigen Fortsetzungen von dieselbe Zahl. Es gilt nun
hierbei bezeichnet einen genügend kleinen Kreisring um . Insbesondere zur Rechtfertigung des letzten Gleichheitszeichen sind noch ein paar Fakten aus der Topologie nötig.
Der leray-schaudersche Abbildungsgrad ist ein Analogon des brouwerschen Abbildungsgrades für (unendlichdimensionale) Banachräume. Dieser Abbildungsgrad wurde 1934 von J. Leray und J. Schauder definiert.[1] Jedoch ist es nicht möglich, den Abbildungsgrad für beliebige stetige Funktionen zu definieren, sondern man darf nur noch kompakte Störungen der Identität zulassen.
Eine kompakte Homotopie ist eine Homotopie zwischen kompakten Operatoren. Es sei offen und beschränkt und für eine operatorwertige Funktion mit kompakten Operatoren . Diese operatorwertige Funktion heißt kompakte Homotopie auf , falls zu jedem ein existiert, sodass
Sei eine kompakte Störung der Identität, offen und beschränkt und . Dann ist der leray-schaudersche Abbildungsgrad eine ganze Zahl , so dass folgende Eigenschaften gelten:
Ist , dann ist die Gleichung lösbar.
Homotopieinvarianz: Ist eine kompakte Homotopie auf mit für alle und , so ist der Abbildungsgrad unabhängig von .
Die wichtigste Methode zur Berechnung des leray-schauderschen Abbildungsgrades führt, genau wie beim brouwerschen Abbildungsgrad, über die Homotopieinvarianz.
Interessiert man sich beispielsweise dafür, ob die Gleichung eine Lösung in hat, so sucht man zunächst einen passenden Raum, so dass ein kompakter Operator ist. Um die Lösbarkeit nachzuweisen, nimmt man nun indirekt an, dass auf gilt, weil sonst nichts mehr zu zeigen ist.
Anschließend sucht man eine kompakte Homotopie mit und für alle und . Diese Homotopie sollte so gewählt sein, dass man für den leray-schauderschen Abbildungsgrad nachweisen kann. Daraus folgt nämlich für alle und somit die Existenz eines mit .
für und gegeben. Man kann zeigen, dass es mindestens eine Lösung hat, falls stetig ist und falls auf für ein geeignetes gilt.
Um dies zu sehen, schreibt man das System von Differentialgleichungen in das System
von Integralgleichungen um. Da beide Gleichungen äquivalent sind, reicht es zu zeigen, dass die Integralgleichung eine stetige Lösung besitzt. Diese ist dann auch differenzierbar. Daher wählt man als den Raum der stetigen Funktion auf dem Intervall mit der Maximumsnorm. Außerdem setzt man
Aufgrund des Satzes von Arzelà-Ascoli ist ein kompakter Operator und eine kompakte Homotopie. Da die Existenz einer Lösung von untersucht wird, wird gesetzt. Da vorausgesetzt wurde, kann man zeigen, dass es reicht, mit einem zu wählen, und erhält aufgrund der Homotopieinvarianz
Damit ist gezeigt, dass die Integralgleichung mindestens eine stetige Lösung besitzt.