CFL-Zahl

mathematischer Satz
(Weitergeleitet von Courant-Zahl)

Die Courant-Friedrichs-Lewy-Zahl (CFL-Zahl oder auch Courant-Zahl) wird in der numerischen Strömungssimulation für die Diskretisierung zeitabhängiger partieller Differentialgleichungen verwendet.

Sie gibt an, um wie viele Zellen sich eine betrachtete Größe pro Zeitschritt maximal fortbewegt:

Dabei ist die Courant-Zahl, die Geschwindigkeit, der diskrete Zeitschritt und der diskrete Ortsschritt. Motiviert wird dies durch die CFL-Bedingung, die aussagt, dass das explizite Euler-Verfahren nur für stabil sein kann. Ähnliche Bedingungen gelten auch für andere Diskretisierungsschemata.

Die Courant-Zahl ist nach den Mathematikern Richard Courant, Kurt Friedrichs und Hans Lewy benannt, die sie 1928 definierten.

Literatur

Bearbeiten