Beschreibung
Display
01) Coordinate time (GM/c^3) 11) BL r coordinate (GM/c^2) 21) BH central charge (M/√(K/G)) 31) Observed framedragging rate (c^3/G/M)
02) Proper time (GM/c^3) 12) BL φ coordinate (radians) 22) Particle charge (m/√(K/G)) 32) Local framedragging velocity (c)
03) Total time dilation (dt/dτ) 13) BL θ coordinate (radians) 23) BH Irreducible mass (M) 33) Cartesian framedragging velocity (c)
04) Grav. time dilation (dt/dτ) 14) dr/dτ (c) 24) Kinetic energy (mc^2) 34) Proper velocity (c, dl/dτ)
05) Local energy (dt/dτ, mc^2) 15) dφ/dτ (c^3/G/M) 25) Potential energy (mc^2) 35) Observed velocity (c, d{x,y,z}/dt)
06) Cartesian radius (GM/c^2) 16) dθ/dτ (c^3/G/M) 26) Total energy (mc^2) 36) Escape velocity (c)
07) x Axis (GM/c^2) 17) d^2r/dτ^2 (c^6/G/M) 27) Carter constant (GMm/c)^2 37) Local r velocity (c)
08) y Axis (GM/c^2) 18) d^2φ/dτ^2 (c^6/G^2/M^2) 28) φ angular momentum (GMm/c) 38) Local θ velocity (c)
09) z Axis (GM/c^2) 19) d^2θ/dτ^2 (c^6/G^2/M^2) 29) θ angular momentum (GMm/c) 39) Local φ velocity (c)
10) travelled distance (GM/c^2) 20) Spin parameter (GM^2/c) 30) Radial momentum (mc) 40) Total local velocity (c)
Equations
Line-element in Boyer-Lindquist-coordinates:
d
τ
2
=
(
1
−
2
r
−
℧
2
Σ
)
d
t
2
−
Σ
Δ
d
r
2
−
Σ
d
θ
2
−
χ
Σ
sin
2
θ
d
ϕ
2
+
2
Λ
Σ
d
t
d
ϕ
{\displaystyle {\rm {d\tau ^{2}\ =\ \left(1-{\frac {2r-\mho ^{2}}{\Sigma }}\right)\mathrm {d} t^{2}\ -\ {\frac {\Sigma }{\Delta }}\ \mathrm {d} r^{2}\ -\ \Sigma \ d\theta ^{2}\ -\ {\frac {\chi }{\Sigma }}\ \sin ^{2}\theta \ d\phi ^{2}\ +\ 2\ {\frac {\Lambda }{\Sigma }}\ dt\ d\phi }}}
Shorthand terms:
Δ
=
r
2
−
2
r
+
a
2
+
℧
2
,
Σ
=
r
2
+
a
2
cos
2
θ
,
χ
=
(
a
2
+
r
2
)
2
−
a
2
sin
2
θ
Δ
,
Λ
=
a
(
2
r
−
℧
2
)
sin
2
θ
{\displaystyle {\rm {\Delta =r^{2}-2r+a^{2}+\mho ^{2}\ ,\ \Sigma =r^{2}+a^{2}\ \cos ^{2}\theta \ ,\ \chi =(a^{2}+r^{2})^{2}-a^{2}\ \sin ^{2}\theta \ \Delta \ ,\ \ \Lambda =a\ (2r-\mho ^{2})\ \sin ^{2}\theta }}}
with the dimensionless spin parameter a=Jc/G/M² and the dimensionless electric charge parameter ℧=Q ₑ/M·√(K/G). Here G=M=c=K=1 so that a=J und ℧=Q ₑ, with lengths in GM/c² and times in GM/c³.
Co- and contravariant metric:
g
μ
ν
=
(
1
−
2
r
−
℧
2
Σ
0
0
Λ
Σ
0
−
Σ
Δ
0
0
0
0
−
Σ
0
Λ
Σ
0
0
−
χ
sin
2
θ
Σ
)
→
g
μ
ν
=
(
χ
Δ
Σ
0
0
−
a
(
℧
2
−
2
r
)
Σ
(
℧
2
−
2
r
+
Σ
)
χ
−
a
Λ
0
−
Δ
Σ
0
0
0
0
−
1
Σ
0
−
a
(
℧
2
−
2
r
)
Σ
(
℧
2
−
2
r
+
Σ
)
χ
−
a
Λ
0
0
−
Δ
−
a
2
sin
2
θ
Δ
Σ
sin
2
θ
)
{\displaystyle {g_{\mu \nu }={\rm {\left({\begin{array}{cccc}{\rm {1-{\frac {2r-\mho ^{2}}{\Sigma }}}}&0&0&{\frac {\Lambda }{\Sigma }}\\0&{\rm {-{\frac {\Sigma }{\Delta }}}}&0&0\\0&0&{\rm {-\Sigma }}&0\\{\frac {\Lambda }{\Sigma }}&0&0&-{\frac {\chi \sin ^{2}\theta }{\Sigma }}\ \end{array}}\right)}}\ \to \ g^{\mu \nu }={\rm {\left({\begin{array}{cccc}{\rm {\frac {\chi }{\Delta \Sigma }}}&0&0&{\rm {-{\frac {a\left({\rm {\mho ^{2}-2r}}\right)\Sigma }{\rm {\left({\rm {\mho ^{2}-2r+\Sigma }}\right)\chi -a\Lambda }}}}}\\0&{\rm {-{\frac {\Delta }{\Sigma }}}}&0&0\\0&0&{\rm {-{\frac {1}{\Sigma }}}}&0\\{\rm {-{\frac {a\left({\rm {\mho ^{2}-2r}}\right)\Sigma }{\rm {\left({\rm {\mho ^{2}-2r+\Sigma }}\right)\chi -a\Lambda }}}}}&0&0&{\rm {-{\frac {\Delta -a^{2}\sin ^{2}\theta }{\Delta \Sigma \sin ^{2}\theta }}}}\\\end{array}}\right)}}}}
Contravariant Maxwell tensor:
F
μ
ν
=
(
0
−
4
(
a
2
+
r
2
)
℧
(
cos
(
2
θ
)
a
2
+
a
2
−
2
r
2
)
(
cos
(
2
θ
)
a
2
+
a
2
+
2
r
2
)
3
−
8
a
2
r
℧
sin
(
2
θ
)
(
cos
(
2
θ
)
a
2
+
a
2
+
2
r
2
)
3
0
4
(
a
2
+
r
2
)
℧
(
cos
(
2
θ
)
a
2
+
a
2
−
2
r
2
)
(
cos
(
2
θ
)
a
2
+
a
2
+
2
r
2
)
3
0
0
a
℧
(
a
2
cos
2
θ
−
r
2
)
(
r
2
+
a
2
cos
2
θ
)
3
8
a
2
r
℧
sin
(
2
θ
)
(
cos
(
2
θ
)
a
2
+
a
2
+
2
r
2
)
3
0
0
16
a
r
℧
cot
θ
(
cos
(
2
θ
)
a
2
+
a
2
+
2
r
2
)
3
0
a
℧
(
r
2
−
a
2
cos
2
θ
)
(
r
2
+
a
2
cos
2
θ
)
3
−
16
a
r
℧
cot
θ
(
cos
(
2
θ
)
a
2
+
a
2
+
2
r
2
)
3
0
)
{\displaystyle {\rm {F}}^{\mu \nu }=\left({\begin{array}{cccc}0&-{\frac {\rm {4(a^{2}+r^{2})\ \mho \ (\cos(2\theta )\ a^{2}+a^{2}-2r^{2})}}{\rm {(\cos(2\theta )\ a^{2}+a^{2}+2r^{2})^{3}}}}&-{\frac {\rm {8a^{2}r\ \mho \sin(2\theta )}}{\rm {(\cos(2\theta )\ a^{2}+a^{2}+2r^{2})^{3}}}}&0\\{\frac {\rm {4(a^{2}+r^{2})\ \mho \ (\cos(2\theta )\ a^{2}+a^{2}-2r^{2})}}{\rm {(\cos(2\theta )\ a^{2}+a^{2}+2r^{2})^{3}}}}&0&0&{\frac {a\ \mho \ (a^{2}\cos ^{2}\theta -r^{2})}{(r^{2}+a^{2}\cos ^{2}\theta )^{3}}}\\{\frac {\rm {8a^{2}r\ \mho \sin(2\theta )}}{\rm {(\cos(2\theta )\ a^{2}+a^{2}+2r^{2})^{3}}}}&0&0&{\frac {\rm {16a\ r\ \mho \cot \theta }}{\rm {(\cos(2\theta )\ a^{2}+a^{2}+2r^{2})^{3}}}}\\0&{\frac {\rm {a\ \mho \ (r^{2}-a^{2}\cos ^{2}\theta )}}{\rm {(r^{2}+a^{2}\cos ^{2}\theta )^{3}}}}&-{\frac {\rm {16a\ r\ \mho \cot \theta }}{\rm {(\cos(2\theta )\ a^{2}+a^{2}+2r^{2})^{3}}}}&0\\\end{array}}\right)}
The coordinate acceleration of a test-particle with the specific charge q is given by
x
¨
i
=
−
∑
j
=
1
4
∑
k
=
1
4
x
˙
j
x
˙
k
Γ
j
k
i
+
q
F
i
k
x
˙
j
g
j
k
{\displaystyle {\rm {{\ddot {x}}^{i}=-\sum _{j=1}^{4}\sum _{k=1}^{4}{\dot {x}}^{j}\ {\dot {x}}^{k}\ \Gamma _{jk}^{i}+q\ {F^{ik}}\ {{\dot {x}}^{j}}}}\ {g_{\rm {jk}}}}
with the Christoffel-symbols
Γ
j
k
i
=
∑
s
=
1
4
g
i
s
2
(
∂
g
s
j
∂
x
k
+
∂
g
s
k
∂
x
j
−
∂
g
j
k
∂
x
s
)
{\displaystyle \Gamma _{\rm {jk}}^{\rm {i}}=\sum _{\rm {s=1}}^{4}{\frac {g^{\rm {is}}}{2}}\left({\frac {\partial {g}_{\rm {sj}}}{\partial {\rm {x^{k}}}}}+{\frac {\partial {g}_{\rm {sk}}}{\partial {\rm {x^{j}}}}}-{\frac {\partial {g}_{\rm {jk}}}{\partial {\rm {x^{s}}}}}\right)}
So the second proper time derivatives are
t
¨
=
−
(
a
2
θ
˙
(
sin
(
2
θ
)
(
q
℧
r
+
(
℧
2
−
2
r
)
t
˙
)
−
2
a
sin
3
θ
cos
θ
(
℧
2
−
2
r
)
ϕ
˙
)
+
{\displaystyle {\rm {{\ddot {t}}=-(a^{2}\ {\dot {\theta }}\ (\sin(2\theta )(q\ \mho \ r+(\mho ^{2}-2r)\ {\dot {t}})-2a\sin ^{3}\theta \cos \theta \ (\mho ^{2}-2r)\ {\dot {\phi }})+}}}
(
r
˙
(
(
a
2
+
r
2
)
(
a
2
cos
2
θ
(
q
℧
−
2
t
˙
)
+
r
(
2
(
r
−
℧
2
)
t
˙
−
q
℧
r
)
)
+
a
sin
2
θ
ϕ
˙
(
2
a
4
cos
2
θ
+
{\displaystyle {\rm {({\dot {r}}\ ((a^{2}+r^{2})(a^{2}\cos ^{2}\theta \ (q\mho -2{\dot {t}})+r(2\ (r-\mho ^{2}){\dot {t}}-q\ \mho \ r))+a\sin ^{2}\theta \ {\dot {\phi }}\ (2a^{4}\cos ^{2}\theta +}}}
a
2
℧
2
r
(
cos
(
2
θ
)
+
3
)
−
a
2
r
2
(
cos
(
2
θ
)
+
3
)
+
4
℧
2
r
3
−
6
r
4
)
)
)
/
(
a
2
+
(
r
−
2
)
r
+
℧
2
)
)
/
(
(
a
2
cos
2
θ
+
r
2
)
2
)
{\displaystyle {\rm {a^{2}\mho ^{2}r\ (\cos(2\theta )+3)-a^{2}r^{2}(\cos(2\theta )+3)+4\mho ^{2}r^{3}-6r^{4})))/(a^{2}+(r-2)r+\mho ^{2}))/((a^{2}\cos ^{2}\theta +r^{2})^{2})}}}
for the time component,
r
¨
=
(
a
2
θ
˙
sin
(
2
θ
)
r
˙
)
/
(
a
2
cos
2
θ
+
r
2
)
+
r
˙
2
(
(
r
−
1
)
/
(
a
2
+
(
r
−
2
)
r
+
℧
2
)
−
r
/
(
a
2
cos
2
θ
+
r
2
)
)
+
{\displaystyle {\rm {{\ddot {r}}=(a^{2}{\dot {\theta }}\sin(2\theta )\ {\dot {r}})/(a^{2}\cos ^{2}\theta +r^{2})+{\dot {r}}^{2}((r-1)/(a^{2}+(r-2)\ r+\mho ^{2})-r/(a^{2}\cos ^{2}\theta +r^{2}))+}}}
(
(
a
2
+
(
r
−
2
)
r
+
℧
2
)
(
8
a
sin
2
θ
ϕ
˙
(
a
2
cos
2
θ
(
q
℧
−
2
t
˙
)
+
r
(
2
(
r
−
℧
2
)
t
˙
−
q
℧
r
)
)
+
{\displaystyle {\rm {((a^{2}+(r-2)\ r+\mho ^{2})(8a\sin ^{2}\theta \ {\dot {\phi }}\ (a^{2}\cos ^{2}\theta \ (q\ \mho -2{\dot {t}})+r(2(r-\mho ^{2}){\dot {t}}-q\ \mho \ r))+}}}
8
t
˙
(
a
2
cos
2
θ
(
t
˙
−
q
℧
)
+
r
(
q
℧
r
+
(
℧
2
−
r
)
t
˙
)
)
+
8
r
θ
˙
2
(
a
2
cos
2
θ
+
r
2
)
2
+
{\displaystyle {\rm {8{\dot {t}}\ (a^{2}\cos ^{2}\theta \ ({\dot {t}}-q\ \mho )+r\ (q\ \mho \ r+(\mho ^{2}-r)\ {\dot {t}}))+8r\ {\dot {\theta }}^{2}\ (a^{2}\cos ^{2}\theta +r^{2})^{2}+}}}
sin
2
θ
ϕ
˙
2
(
2
a
4
sin
2
(
2
θ
)
+
r
(
a
2
(
a
2
cos
(
4
θ
)
+
3
a
2
+
4
(
a
−
℧
)
(
a
+
℧
)
cos
(
2
θ
)
+
4
℧
2
)
+
{\displaystyle {\rm {\sin ^{2}\theta \ {\dot {\phi }}^{2}\ (2a^{4}\sin ^{2}(2\theta )+r\ (a^{2}(a^{2}\cos(4\theta )+3a^{2}+4\ (a-\mho )(a+\mho )\cos(2\theta )+4\mho ^{2})+}}}
8
r
(
−
a
2
sin
2
θ
+
2
a
2
r
cos
2
θ
+
r
3
)
)
)
)
)
/
(
8
(
a
2
cos
2
θ
+
r
2
)
3
)
{\displaystyle {\rm {8r\ (-a^{2}\sin ^{2}\theta +2a^{2}r\cos ^{2}\theta +r^{3})))))/(8\ (a^{2}\cos ^{2}\theta +r^{2})^{3})}}}
for the radial component,
θ
¨
=
−
(
2
r
θ
˙
r
˙
)
/
(
a
2
cos
2
θ
+
r
2
)
−
(
a
2
sin
θ
cos
θ
r
˙
2
)
/
(
(
a
2
+
(
r
−
2
)
r
+
{\displaystyle {\rm {{\ddot {\theta }}=-(2r\ {\dot {\theta }}\ {\dot {r}})/(a^{2}\cos ^{2}\theta +r^{2})-(a^{2}\sin \theta \cos \theta \ {\dot {r}}^{2})/((a^{2}+(r-2)\ r+}}}
℧
2
)
(
a
2
cos
2
θ
+
r
2
)
)
+
(
sin
(
2
θ
)
(
a
2
(
8
θ
˙
2
(
a
2
cos
2
θ
+
r
2
)
2
−
8
t
˙
(
2
q
℧
r
+
{\displaystyle {\rm {\mho ^{2})(a^{2}\cos ^{2}\theta +r^{2}))+(\sin(2\theta )(a^{2}(8{\dot {\theta }}^{2}(a^{2}\cos ^{2}\theta +r^{2})^{2}-8{\dot {t}}(2q\ \mho \ r+}}}
(
℧
2
−
2
r
)
t
˙
)
)
+
16
a
(
a
2
+
r
2
)
ϕ
˙
(
q
℧
r
+
(
℧
2
−
2
r
)
t
˙
)
+
ϕ
˙
2
(
3
a
6
+
11
a
4
r
2
+
10
a
4
r
−
{\displaystyle {\rm {(\mho ^{2}-2r)\ {\dot {t}}))+16a\ (a^{2}+r^{2})\ {\dot {\phi }}(q\ \mho \ r+(\mho ^{2}-2r)\ {\dot {t}})+{\dot {\phi }}^{2}(3a^{6}+11a^{4}r^{2}+10a^{4}r-}}}
5
a
4
℧
2
+
4
a
2
(
a
2
+
2
r
2
)
cos
(
2
θ
)
(
a
2
+
(
r
−
2
)
r
+
℧
2
)
−
8
a
2
℧
2
r
2
+
16
a
2
r
4
+
16
a
2
r
3
+
a
4
cos
(
4
θ
)
(
a
2
+
{\displaystyle {\rm {5a^{4}\mho ^{2}+4a^{2}(a^{2}+2r^{2})\cos(2\theta )(a^{2}+(r-2)r+\mho ^{2})-8a^{2}\mho ^{2}r^{2}+16a^{2}r^{4}+16a^{2}r^{3}+a^{4}\cos(4\theta )(a^{2}+}}}
(
r
−
2
)
r
+
℧
2
)
+
8
r
6
)
)
)
/
(
16
(
a
2
cos
2
θ
+
r
2
)
3
)
{\displaystyle {\rm {(r-2)r+\mho ^{2})+8r^{6})))/(16(a^{2}\cos ^{2}\theta +r^{2})^{3})}}}
the poloidial component and
ϕ
¨
=
−
(
(
r
˙
(
4
a
q
℧
(
a
2
cos
2
θ
−
r
2
)
−
8
a
t
˙
(
a
2
cos
2
θ
+
r
(
℧
2
−
r
)
)
+
ϕ
˙
(
2
a
4
sin
2
(
2
θ
)
+
{\displaystyle {\rm {{\ddot {\phi }}=-(({\dot {r}}(4a\ q\ \mho \ (a^{2}\cos ^{2}\theta -r^{2})-8a\ {\dot {t}}(a^{2}\cos ^{2}\theta +r\ (\mho ^{2}-r))+{\dot {\phi }}\ (2a^{4}\sin ^{2}(2\theta )+}}}
8
r
3
(
a
2
cos
(
2
θ
)
+
a
2
+
℧
2
)
+
a
2
r
(
a
2
(
4
cos
(
2
θ
)
+
cos
(
4
θ
)
)
+
3
a
2
+
8
℧
2
)
−
4
a
2
r
2
(
cos
(
2
θ
)
+
3
)
+
8
r
5
−
16
r
4
)
)
)
/
(
a
2
+
{\displaystyle {\rm {8r^{3}(a^{2}\cos(2\theta )+a^{2}+\mho ^{2})+a^{2}r\ (a^{2}(4\cos(2\theta )+\cos(4\theta ))+3a^{2}+8\mho ^{2})-4a^{2}r^{2}(\cos(2\theta )+3)+8r^{5}-16r^{4})))/(a^{2}+}}}
(
r
−
2
)
r
+
℧
2
)
+
θ
˙
(
ϕ
˙
(
a
4
(
−
sin
(
4
θ
)
)
−
2
a
2
sin
(
2
θ
)
(
3
a
2
+
4
(
r
−
1
)
r
+
2
℧
2
)
+
8
(
a
2
+
r
2
)
2
cot
θ
)
+
{\displaystyle {\rm {(r-2)\ r+\mho ^{2})+{\dot {\theta }}\ ({\dot {\phi }}\ (a^{4}(-\sin(4\theta ))-2a^{2}\sin(2\theta )(3a^{2}+4(r-1)r+2\mho ^{2})+8\ (a^{2}+r^{2})^{2}\cot \theta )+}}}
8
a
cot
θ
(
q
℧
r
+
(
℧
2
−
2
r
)
t
˙
)
)
)
/
(
4
(
a
2
cos
2
θ
+
r
2
)
2
)
{\displaystyle {\rm {8a\cot \theta \ (q\ \mho \ r+(\mho ^{2}-2r)\ {\dot {t}})))/(4(a^{2}\cos ^{2}\theta +r^{2})^{2})}}}
for the axial component of the 4-acceleration. The total time dilation is
t
˙
{\displaystyle {\rm {\dot {t}}}}
=
csc
2
θ
(
L
z
(
a
Δ
sin
2
θ
−
a
(
a
2
+
r
2
)
sin
2
θ
)
−
q
℧
r
(
a
2
+
r
2
)
sin
2
θ
+
E
(
(
a
2
+
r
2
)
2
sin
2
θ
−
a
2
Δ
sin
4
θ
)
)
Δ
Σ
{\displaystyle {\rm {={\frac {\csc ^{2}\theta \ ({L_{z}}(a\ \Delta \sin ^{2}\theta -a\ (a^{2}+r^{2})\sin ^{2}\theta )-q\ \mho \ r\ (a^{2}+r^{2})\sin ^{2}\theta +E((a^{2}+r^{2})^{2}\sin ^{2}\theta -a^{2}\Delta \sin ^{4}\theta ))}{\Delta \Sigma }}}}}
=
a
(
L
z
−
a
E
sin
2
θ
)
+
(
r
2
+
a
2
)
P
/
Δ
Σ
{\displaystyle {\rm {={\frac {a(L_{z}-aE\sin ^{2}\theta )+(r^{2}+a^{2})P/\Delta }{\Sigma }}}}}
where the differentiation goes by the proper time τ for charged (q≠0) and neutral (q=0) particles (μ=-1, v<1), and for massless particles (μ=0, v=1) by the spatial affine parameter ŝ. The relation between the first proper time derivatives and the local three-velocity components relative to a ZAMO is
r
˙
=
v
r
Δ
Σ
(
1
−
μ
2
v
2
)
=
S
i
g
n
(
v
r
)
V
r
Σ
θ
˙
=
v
θ
Σ
(
1
−
μ
2
v
2
)
=
S
i
g
n
(
v
θ
)
V
θ
Σ
{\displaystyle {\rm {{\dot {r}}={\frac {v_{r}{\sqrt {\Delta }}}{\sqrt {\Sigma (1-\mu ^{2}v^{2})}}}}}={\frac {{\rm {Sign}}({\rm {v_{r}){\sqrt {\rm {V_{r}}}}}}}{\Sigma }}\ \ \ \ \ \ \ \ {\rm {{\dot {\theta }}={\frac {v_{\theta }}{\sqrt {\Sigma (1-\mu ^{2}v^{2})}}}={\frac {\rm {Sign(v_{\theta }){\sqrt {\rm {V_{\theta }}}}}}{\Sigma }}}}}
ϕ
˙
=
a
(
a
2
E
−
a
L
z
−
Δ
E
−
q
r
℧
+
E
r
2
)
+
Δ
L
z
csc
2
θ
Δ
Σ
{\displaystyle {\dot {\phi }}{\rm {={\frac {a\left(a^{2}E-aL_{z}-\Delta E-qr\mho +Er^{2}\right)+\Delta L_{z}\csc ^{2}\theta }{\Delta \Sigma }}}}}
The local three-velocity in terms of the position and the constants of motion is
v
=
|
−
a
2
L
z
2
Σ
2
(
℧
2
−
2
r
)
2
+
2
a
L
z
Σ
χ
(
2
r
−
℧
2
)
(
E
Σ
−
q
r
℧
)
+
χ
(
Δ
Σ
3
−
χ
(
E
Σ
−
q
r
℧
)
2
)
a
L
z
Σ
(
℧
2
−
2
r
)
+
χ
(
E
Σ
−
q
r
℧
)
|
{\displaystyle {\rm {v=\left|{\frac {\sqrt {-a^{2}L_{z}^{2}\Sigma ^{2}\left(\mho ^{2}-2r\right)^{2}+2aL_{z}\Sigma \chi \left(2r-\mho ^{2}\right)(E\Sigma -qr\mho )+\chi \left(\Delta \Sigma ^{3}-\chi (E\Sigma -qr\mho )^{2}\right)}}{aL_{z}\Sigma \left(\mho ^{2}-2r\right)+\chi (E\Sigma -qr\mho )}}\right|}}}
which reduces to
v
=
χ
(
E
−
L
z
Ω
)
2
−
Δ
Σ
χ
(
E
−
L
z
Ω
)
2
=
t
˙
2
−
ς
2
t
˙
{\displaystyle {\rm {v={\sqrt {\frac {\chi \ (E-L_{z}\ \Omega )^{2}-\Delta \ \Sigma }{\chi \ (E-L_{z}\ \Omega )^{2}}}}={\frac {\sqrt {{\dot {t}}^{2}-\varsigma ^{2}}}{\dot {t}}}}}}
if the charge of the test particle is q=0. The escape velocity of a charged particle with zero orbital angular momentum is
v
e
s
c
=
|
a
4
cos
4
θ
(
Δ
Σ
−
χ
)
+
2
a
2
r
cos
2
θ
(
q
χ
℧
+
Δ
r
Σ
−
r
χ
)
+
r
2
(
−
q
2
χ
℧
2
+
2
q
r
χ
℧
+
r
2
(
Δ
Σ
−
χ
)
)
χ
(
a
2
cos
2
θ
+
r
(
r
−
q
℧
)
)
|
{\displaystyle {\rm {v_{esc}=\left|{\frac {\sqrt {a^{4}\cos ^{4}\theta (\Delta \Sigma -\chi )+2a^{2}r\cos ^{2}\theta (q\chi \mho +\Delta r\Sigma -r\chi )+r^{2}\left(-q^{2}\chi \mho ^{2}+2qr\chi \mho +r^{2}(\Delta \Sigma -\chi )\right)}}{{\sqrt {\chi }}\left(a^{2}\cos ^{2}\theta +r(r-q\mho )\right)}}\right|}}}
which for a neutral test particle with q=0 reduces to
v
e
s
c
=
ς
2
−
1
ς
{\displaystyle {\rm {v_{esc}}}={\frac {\sqrt {\varsigma ^{2}-1}}{\varsigma }}}
with the gravitational time dilation of a locally stationary ZAMO
ς
=
d
t
d
τ
=
|
g
t
t
|
=
χ
Δ
Σ
{\displaystyle \varsigma ={\frac {\rm {dt}}{\rm {d\tau }}}={\sqrt {|g^{\rm {tt}}|}}={\sqrt {\frac {\chi }{\Delta \ \Sigma }}}}
which is infinite at the horizon. The time dilation of a globally stationary particle (with respect to the fixed stars) is
σ
=
d
t
d
τ
=
|
1
/
g
t
t
|
=
1
1
−
2
r
−
℧
2
Σ
{\displaystyle \sigma ={\frac {\rm {dt}}{\rm {d\tau }}}={\sqrt {|1/g_{\rm {tt}}|}}={\frac {1}{\sqrt {1-{\frac {\rm {2r-\mho ^{2}}}{\Sigma }}}}}}
which is infinite at the ergosphere. The Frame-Dragging angular velocity observed at infinity is
ω
=
|
g
t
ϕ
g
ϕ
ϕ
|
=
a
(
2
r
−
℧
2
)
/
χ
{\displaystyle \omega =\left|{\frac {g_{\rm {t\phi }}}{g_{\phi \phi }}}\right|={\rm {a\left(2r-\mho ^{2}\right)/\chi }}}
The local frame dragging velocity with respect to the fixed stars is therefore
v
ϕ
=
g
t
ϕ
g
t
ϕ
=
1
−
g
t
t
g
t
t
=
|
g
t
ϕ
g
ϕ
ϕ
g
t
t
g
ϕ
ϕ
|
=
ω
R
¯
ϕ
ς
{\displaystyle v_{\phi }={\sqrt {g_{\rm {t\phi }}\ g^{\rm {t\phi }}}}={\sqrt {1-g_{\rm {tt}}\ g^{\rm {tt}}}}=|{\frac {g_{\rm {t\phi }}}{g_{\rm {\phi \phi }}}}{\sqrt {g^{\rm {tt}}}}\ {\sqrt {g_{\rm {\phi \phi }}}}|=\omega {\bar {\rm {R}}}_{\phi }\varsigma }
which is c at the ergosphere. The axial radius of gyration is
R
¯
ϕ
=
|
g
ϕ
ϕ
|
=
χ
Σ
sin
θ
{\displaystyle {\bar {\rm {R}}}_{\phi }={\sqrt {|g_{\phi \phi }|}}={\sqrt {\frac {\chi }{\Sigma }}}\ \sin \theta }
The 3 conserved quantities are 1) the total energy:
E
=
g
t
t
t
˙
+
g
t
ϕ
ϕ
˙
+
q
A
t
=
t
˙
(
1
−
2
r
−
℧
2
Σ
)
+
ϕ
˙
a
sin
2
θ
(
2
r
−
℧
2
)
Σ
+
℧
q
r
Σ
=
Δ
Σ
(
1
−
μ
2
v
2
)
χ
+
ω
L
z
+
℧
q
r
Σ
{\displaystyle {{\rm {E}}=g_{\rm {tt}}\ {\dot {\rm {t}}}+g_{\rm {t\phi }}\ {\rm {{\dot {\phi }}+{\rm {q\ A_{t}={\dot {t}}\left(1-{\frac {2r-\mho ^{2}}{\Sigma }}\right)+{\dot {\phi }}{\frac {a\sin ^{2}\theta \left(2r-\mho ^{2}\right)}{\Sigma }}+{\frac {\mho \ q\ r}{\Sigma }}={\rm {{\sqrt {\frac {\Delta \ \Sigma }{(1-\mu ^{2}v^{2})\ \chi }}}+\omega \ L_{z}+{\frac {\mho \ q\ r}{\Sigma }}}}}}}}}}
2) the axial angular momentum:
L
z
=
−
g
ϕ
ϕ
ϕ
˙
−
g
t
ϕ
t
˙
−
q
A
ϕ
=
ϕ
˙
χ
sin
2
θ
Σ
−
t
˙
a
sin
2
θ
(
2
r
−
Q
2
)
Σ
+
a
r
℧
q
sin
2
θ
Σ
=
v
ϕ
R
¯
ϕ
1
−
μ
2
v
2
+
(
1
−
μ
2
v
2
)
a
r
℧
q
sin
2
θ
Σ
{\displaystyle {\rm {L_{z}}}=-g_{\phi \phi }\ {\dot {\phi }}-g_{\rm {t\phi }}\ {\rm {{\dot {t}}-q\ A_{\phi }={\rm {{\frac {{\dot {\phi }}\ \chi \sin ^{2}\theta }{\Sigma }}-{\frac {{\dot {t}}\ a\ \sin ^{2}\theta \left(2r-Q^{2}\right)}{\Sigma }}+{\frac {a\ r\ \mho \ q\ \sin ^{2}\theta }{\Sigma }}}}={\frac {v_{\phi }\ {\bar {R}}_{\phi }}{\sqrt {1-\mu ^{2}\ v^{2}}}}+{\frac {(1-\mu ^{2}v^{2})\ a\ r\ \mho \ q\ \sin ^{2}\theta }{\Sigma }}}}}
3) the Carter constant:
Q
=
p
θ
2
+
cos
2
θ
[
L
z
2
csc
2
θ
−
a
2
(
E
2
+
μ
)
]
{\displaystyle {\rm {Q=p_{\theta }^{2}+\cos ^{2}\theta \ [L_{z}^{2}\csc ^{2}\theta -a^{2}(E^{2}+\mu )]}}}
The effective radial potential whose zero roots define the turning points is
V
r
=
P
2
−
Δ
(
(
L
z
−
a
E
)
2
+
Q
+
μ
2
r
2
)
{\displaystyle {\rm {V_{r}=P^{2}-\Delta \left((L_{z}-aE)^{2}+Q+\mu ^{2}r^{2}\right)}}}
and the poloidial potential
V
θ
=
v
θ
2
Σ
1
−
μ
2
v
2
=
Q
−
cos
2
θ
(
a
2
(
μ
2
−
E
2
)
+
L
z
2
sin
2
θ
)
{\displaystyle {\rm {V_{\theta }={\frac {{v_{\theta }}^{2}\ \Sigma }{1-\mu ^{2}v^{2}}}=Q-\cos ^{2}\theta \left(a^{2}\left(\mu ^{2}-E^{2}\right)+{\frac {\rm {L_{z}^{2}}}{\sin ^{2}\theta }}\right)}}}
with the parameter
P
=
E
(
a
2
+
r
2
)
−
a
L
z
+
q
r
℧
{\displaystyle {\rm {P=E\left(a^{2}+r^{2}\right)-aL_{z}+qr\mho }}}
The azimutal and latitudinal impact parameters are
b
ϕ
=
L
z
E
,
b
θ
=
Q
E
2
{\displaystyle {\rm {b_{\phi }={\frac {L_{z}}{E}}\ ,\ \ b_{\theta }={\sqrt {\frac {Q}{E^{2}}}}}}}
The horizons and ergospheres have the Boyer-Lindquist-radius
r
H
±
=
1
±
1
−
a
2
−
℧
2
,
r
E
±
=
1
±
1
−
a
2
cos
2
θ
−
℧
2
{\displaystyle {\rm {r_{H}^{\pm }=1\pm {\sqrt {1-a^{2}-\mho ^{2}}}}}\ ,\ \ {\rm {r_{E}^{\pm }=1\pm {\sqrt {\rm {1-a^{2}\cos ^{2}\theta -\mho ^{2}}}}}}}
In this article the total mass equivalent M, which also contains the rotational and the electrical field energy, is set to 1; the relation of M with the irreducible mass is
M
i
r
r
=
2
M
2
−
℧
2
+
2
M
M
2
−
℧
2
−
a
2
2
→
M
=
16
M
i
r
r
4
+
8
M
i
r
r
2
℧
2
+
℧
4
16
M
i
r
r
2
−
4
a
2
{\displaystyle {\rm {M_{\rm {irr}}={\frac {\sqrt {2M^{2}-\mho ^{2}+2M{\sqrt {M^{2}-\mho ^{2}-a^{2}}}}}{2}}\ \to \ M={\sqrt {\frac {16M_{\rm {irr}}^{4}+8M_{\rm {irr}}^{2}\ \mho ^{2}+\mho ^{4}}{16M_{\rm {irr}}^{2}-4a^{2}}}}}}}
where a is in units of M.
Reference
Usage in Wikipedia-articles
Lizenz
Ich, der Urheber dieses Werkes, veröffentliche es unter der folgenden Lizenz:
Dieses Werk darf von dir
verbreitet werden – vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden
neu zusammengestellt werden – abgewandelt und bearbeitet werden
Zu den folgenden Bedingungen:
Namensnennung – Du musst angemessene Urheber- und Rechteangaben machen, einen Link zur Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Diese Angaben dürfen in jeder angemessenen Art und Weise gemacht werden, allerdings nicht so, dass der Eindruck entsteht, der Lizenzgeber unterstütze gerade dich oder deine Nutzung besonders.
Weitergabe unter gleichen Bedingungen – Wenn du das Material wiedermischst, transformierst oder darauf aufbaust, musst du deine Beiträge unter der gleichen oder einer kompatiblen Lizenz wie das Original verbreiten. https://creativecommons.org/licenses/by-sa/4.0 CC BY-SA 4.0 Creative Commons Attribution-Share Alike 4.0 true true
173
187
8
8
758
500
inner ergosphere and ring singularity
Deutsch Orbit eines negativ geladenen Partikels um ein positiv geladenes und rotierendes schwarzes Loch
Englisch Orbit of a negatively charged particle around a positively charged and rotating black hole