Originaldatei (SVG-Datei, Basisgröße: 840 × 840 Pixel, Dateigröße: 103 KB)

Dieses Bild in rendern.

Diese Datei und die Informationen unter dem roten Trennstrich werden aus dem zentralen Medienarchiv Wikimedia Commons eingebunden.

Zur Beschreibungsseite auf Commons


Beschreibung

Beschreibung
English: Computed drawings of four different types of magnetic dipoles.

Upper left: An ideal point-like dipole. The field shape is scale invariant and approximates the field of any magnetized volume with nonzero dipole moment at large distance.
Upper right: Discrete dipole of two opposite point-like magnetic poles at finite distance, a physical dipole. Note that isolated magnetic charges don't exist, but this configuration accurately represents the field of a very thin magnetized rod with magnetic poles at each end.
Lower left: Circular ring conductor loop with electric an current. An “Amperian loop”.
Lower right: Ideal continuous solenoid, a hollow cylinder with uniform circular current sheet around its circumference. This equally represents the B-field of a uniformely magnetized cylinder magnet.

Although the four field configurations differ significantly, they all converge to the same dipole field at large distances. Each configuration may represent a magnetic dipole.
Datum
Quelle Eigenes Werk
Urheber Geek3
Andere Versionen VFPt dipoles electric.svg
SVG‑Erstellung
InfoField
 
Der SVG-Code ist valide.
 
Dieser Plot wurde mit VectorFieldPlot erstellt.
 
 Diese SVG-Datei verwendet das SVG-switch-Element zur Mehrsprachigkeit.
Quelltext
InfoField

Python code

# paste this code at the end of VectorFieldPlot 2.5
R = 0.6
h = 0.6
rsym = 21


doc = FieldplotDocument('VFPt_dipoles_magnetic1', commons=True,
    width=360, height=360)
field = Field([ ['dipole', {'x':0, 'y':0, 'px':0., 'py':1.}] ])

def f_arrows(xy):
    return xy[1] * (sc.hypot(xy[0], xy[1]) / 1.4 - 1)
def f_cond(xy):
    return hypot(*xy) > 1e-4 and (fabs(xy[1]) < 1e-3 or fabs(xy[1]) > .3)

nlines = 19
startpoints = Startpath(field, lambda t: 0.25*sc.array([sin(t), cos(t)]),
    t0=-pi/2, t1=pi/2).npoints(nlines)
for p0 in startpoints:
    line = FieldLine(field, p0, directions='both')
    doc.draw_line(line, maxdist=1, arrows_style={'at_potentials':[0.],
        'potential':f_arrows, 'condition_func':f_cond, 'scale':1.2})

# draw dipole symbol
rg_grad = etree.SubElement(doc._get_defs(), 'linearGradient')
rg_grad.set('id', 'grad_rg')
for attr, val in [ ['x1', '0'], ['x2', '0'], ['y1', '0'], ['y2', '1'] ]:
    rg_grad.set(attr, val)
for col, of in [ ['#00cc00', '0'], ['#887744', '0.5'], ['#ff0000', '1'] ]:
    stop = etree.SubElement(rg_grad, 'stop')
    stop.set('stop-color', col)
    stop.set('offset', of)
    stop.set('stop-opacity', '1')
symb = doc.draw_object('g', {'id':'dipole_symbol',
    'transform':'scale({0},{0})'.format(1./doc.unit)})
doc.draw_object('circle', {'cx':'0', 'cy':'0', 'r':rsym,
    'fill':'url(#grad_rg)', 'stroke':'none'}, group=symb)
doc._check_whitespot()
doc.draw_object('circle', {'cx':'0', 'cy':'0', 'r':rsym,
    'fill':'url(#white_spot)', 'stroke':'#000000', 'stroke-width':'3'},
    group=symb)
doc.draw_object('path', {'fill':'#000000', 'stroke':'none',
    'd':'M 3,-12 V 0 H 12 L 0,15 L -12,0 H -3 V -12 H 3 Z'}, group=symb)
doc.write()



doc = FieldplotDocument('VFPt_dipoles_magnetic2', commons=True,
    width=360, height=360)
field = Field([ ['monopole', {'x':0, 'y':h, 'Q':1}],
    ['monopole', {'x':0, 'y':-h, 'Q':-1}] ])

def f_arrows(xy):
    return xy[1] * (sc.hypot(xy[0], xy[1]) / 1.4 - 1)
def f_cond(xy):
    return fabs(xy[0]) < 1.4

nlines = 18
stp = Startpath(field, lambda t: R*sc.array([.2*sin(t), 1+.2*cos(t)]),
    t0=-pi, t1=pi)
startpoints = [stp.startpos(s) for s in sc.arange(nlines)/float(nlines)]
startpoints.append(startpoints[nlines//2].dot([ [1,0],[0,-1] ]))
for p0 in startpoints:
    line = FieldLine(field, p0, directions='both', maxr=100)
    doc.draw_line(line, maxdist=1, arrows_style={'at_potentials':[0.],
        'potential':f_arrows, 'condition_func':f_cond, 'scale':1.2})

# draw pole symbols
symb_N = doc.draw_object('g', {'id':'north_symbol',
    'transform':'translate(0,{0}) scale({1},{1})'.format(h, 1./doc.unit)})
symb_S = doc.draw_object('g', {'id':'south_symbol',
    'transform':'translate(0,{0}) scale({1},{1})'.format(-h, 1./doc.unit)})
for i, g in enumerate([symb_N, symb_S]):
    doc.draw_object('circle', {'cx':'0', 'cy':'0', 'r':rsym, 'stroke':'none',
        'fill':['#ff0000', '#00cc00'][i]}, group=g)
    doc._check_whitespot()
    doc.draw_object('circle', {'cx':'0', 'cy':'0', 'r':rsym,
        'fill':'url(#white_spot)', 'stroke':'#000000', 'stroke-width':'3'}, group=g)
    
    text = etree.SubElement(g, 'text')
    for attr, val in [ ['text-anchor', 'middle'], ['x', 0], ['y', 11],
        ['fill', '#000000'], ['stroke', 'none'], ['font-size', '32px'],
        ['font-family', 'Bitstream Vera Sans'],
        ['transform', 'scale(1, -1)'] ]:
        text.set(attr, str(val))
        text.text = ['N', 'S'][i]
doc.write()



doc = FieldplotDocument('VFPt_dipoles_magnetic3', commons=True,
    width=360, height=360)
field = Field([ ['ringcurrent', {'x':0, 'y':0, 'R':R, 'phi':pi/2, 'I':1.}] ])

def f_arrows(xy):
    return xy[1] * (sc.hypot(xy[0], xy[1]) / 1.4 - 1)
def f_cond(xy):
    return hypot(*xy) > R and fabs(fabs(xy[0]) - 1.4) > 0.2

nlines = 13
startpoints = Startpath(field, lambda t: sc.array([R*t, 0.]),
    t0=-0.8, t1=0.8).npoints(nlines)
for p0 in startpoints:
    line = FieldLine(field, p0, directions='both')
    doc.draw_line(line, maxdist=1, arrows_style={'at_potentials':[0.],
        'potential':f_arrows, 'condition_func':f_cond, 'scale':1.2})

# draw current symbols
symb_out = doc.draw_object('g', {'id':'out_symbol',
    'transform':'translate({0},0) scale({1},{1})'.format(-R, 1./doc.unit)})
symb_in = doc.draw_object('g', {'id':'in_symbol',
    'transform':'translate({0},0) scale({1},{1})'.format(R, 1./doc.unit)})
for i, g in enumerate([symb_out, symb_in]):
    doc.draw_object('circle', {'cx':'0', 'cy':'0', 'r':rsym, 'stroke':'none',
        'fill':'#999999'}, group=g)
    doc._check_whitespot()
    doc.draw_object('circle', {'cx':'0', 'cy':'0', 'r':rsym,
        'fill':'url(#white_spot)', 'stroke':'#000000', 'stroke-width':'3'}, group=g)
    
    if i == 0: # dot
        c_symb = etree.SubElement(g, 'circle')
        c_symb.set('cx', '0')
        c_symb.set('cy', '0')
        c_symb.set('r', '6')
    else: # cross
        c_symb = etree.SubElement(g, 'path')
        c_symb.set('d', 'M {1},{4} L {0},{5} L {2},{3} L {0},{1} \
L {1},{0} {3},{2} L {5},{0} L {4},{1} L {6},{3} L {4},{5} L {5},{4} \
L {3},{6} L {1},{4} Z'.format(12.24, 8, 4.24, 0, -12.24, -8, -4.24))
        c_symb.set('style', 'fill:#000000; stroke:none')
doc.write()



doc = FieldplotDocument('VFPt_dipoles_magnetic4', commons=True,
    width=360, height=360)
field = Field([ ['coil', {'x':0, 'y':0, 'phi':pi/2, 'R':R, 'Lhalf':h, 'I':1.}] ])

def f_arrows(xy):
    return xy[1] * (sc.hypot(xy[0], xy[1]) / 1.4 - 1)
def f_cond(xy):
    return sc.hypot(xy[0], xy[1]) > R

nlines = 13
for iline in range(nlines):
    p0 = sc.array([R * (-1. + 2. * (iline + 0.5) / nlines), 0.])
    line = FieldLine(field, p0, directions='both', maxr=100)
    doc.draw_line(line, maxdist=1, arrows_style={'at_potentials':[0.],
        'potential':f_arrows, 'condition_func':f_cond, 'scale':1.2})

# draw solenoid
sheet_out = doc.draw_object('g', {
    'transform':'translate({0},0)'.format(-R)})
sheet_in = doc.draw_object('g', {
    'transform':'translate({0},0)'.format(R)})
for i, g in enumerate([sheet_out, sheet_in]):
    doc.draw_object('rect', {'stroke-width':0.03, 'stroke-linejoin':'round',
        'x':-0.045, 'y':-h, 'width':0.09, 'height':2*h,
        'stroke':'#000000', 'fill':'#bbbbbb'}, group=g)
    nsym = 12
    for isym in range(nsym):
        y = (h - 0.015) * (2 * (isym + 0.5) / nsym - 1)
        if i == 0:
            doc.draw_object('circle', {'cx':'0', 'cy':y, 'r':0.02,
            'fill':'#000000', 'stroke':'none'}, group=g)
        else:
            doc.draw_object('path', {'d':'M -2,-2 L 2,2 M -2,2 L 2,-2',
                'fill':'none', 'stroke':'#000000',
                'transform':'translate(0, {0}) scale(0.012)'.format(y),
                'stroke-width':'1', 'stroke-linecap':'butt'}, group=g)
doc.write()

Lizenz

Ich, der Urheber dieses Werkes, veröffentliche es unter der folgenden Lizenz:
w:de:Creative Commons
Namensnennung Weitergabe unter gleichen Bedingungen
Dieses Werk darf von dir
  • verbreitet werden – vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden
  • neu zusammengestellt werden – abgewandelt und bearbeitet werden
Zu den folgenden Bedingungen:
  • Namensnennung – Du musst angemessene Urheber- und Rechteangaben machen, einen Link zur Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Diese Angaben dürfen in jeder angemessenen Art und Weise gemacht werden, allerdings nicht so, dass der Eindruck entsteht, der Lizenzgeber unterstütze gerade dich oder deine Nutzung besonders.
  • Weitergabe unter gleichen Bedingungen – Wenn du das Material wiedermischst, transformierst oder darauf aufbaust, musst du deine Beiträge unter der gleichen oder einer kompatiblen Lizenz wie das Original verbreiten.

Kurzbeschreibungen

Ergänze eine einzeilige Erklärung, was diese Datei darstellt.
Four models of magnetic dipoles with accurately computed field lines

In dieser Datei abgebildete Objekte

Motiv

image/svg+xml

Dateiversionen

Klicke auf einen Zeitpunkt, um diese Version zu laden.

Version vomVorschaubildMaßeBenutzerKommentar
aktuell17:25, 11. Jan. 2020Vorschaubild der Version vom 17:25, 11. Jan. 2020840 × 840 (103 KB)Geek3User created page with UploadWizard

Die folgende Seite verwendet diese Datei:

Globale Dateiverwendung

Die nachfolgenden anderen Wikis verwenden diese Datei:

Metadaten