Datei:VFPt horseshoe-magnet.svg
Originaldatei (SVG-Datei, Basisgröße: 600 × 600 Pixel, Dateigröße: 40 KB)
Diese Datei und die Informationen unter dem roten Trennstrich werden aus dem zentralen Medienarchiv Wikimedia Commons eingebunden.
Beschreibung
BeschreibungVFPt horseshoe-magnet.svg |
English: Drawing of a horseshoe magnet with precisely computed magnetic field lines. The horseshoe magnet is assumed as a curved cylindrical rod with constant magnetisation along the cylinder axis. North- and southpole of the magnet are marked in red and green, respectively. The shape of the magnetic field is computed as follows: H- and B-field are identical in free space, so we can choose the easier one, which is the H-field. The H-field has its sources and sinks where the lines of the magnetisation end and begin. Thus, the correct field is obtained by placing magnetic charges at the surfaces of the two magnetic poles. The field of a charge disc distribution is obtained by numerical integration. The shape of the field lines is traced with a Runge-Kutta algorithm. The density of field lines corresponds roughly to the field strength, however due to 3D variations of the field, this cannot exactly be fulfilled. Note that in measured field distributions, e.g. using magnetised iron filings the field shape in the lower part of the image (where the magnet is bent) may somewhat differ. This is because the total field strength is very weak there. Therefore any inhomogeneity in the magnetisation can strongly alter the field direction. |
||
Datum | |||
Quelle | Eigenes Werk | ||
Urheber | Geek3 | ||
SVG‑Erstellung InfoField | Dieser Plot wurde mit VectorFieldPlot erstellt.
| ||
Quelltext InfoField | Python code# paste this code at the end of VectorFieldPlot 3.0
doc = FieldplotDocument('VFPt_horseshoe-magnet', commons=True,
width=600, height=600)
x0, y0 = 0.0, -1.0
h = 2.0
R = 1.0
r = 0.3
# Note: The H-field of a magnet with constant profile and magnetization
# is exactly equal to the one created by magnetic surface charges
# at the ends of the magnet. In this case the ends are round discs.
field = Field([
['charged_disc', {'x0':x0-R-r, 'y0':y0+h, 'x1':x0-R+r, 'y1':y0+h, 'Q':-1}],
['charged_disc', {'x0':x0+R-r, 'y0':y0+h, 'x1':x0+R+r, 'y1':y0+h, 'Q':1}] ])
nlines = 24
def startp(t):
return sc.array([x0 + R - R*cos(t*2*pi), y0 + h + R*sin(t*2*pi)])
startpoints = Startpath(field, startp).npoints(nlines)
for iline, p0 in enumerate(startpoints):
line = FieldLine(field, p0, directions='both', maxr=1000)
fe = {'start':True, 'leave_image':False, 'enter_image':False, 'end':True}
if iline in [0, 1, 2, nlines-1, nlines-2, nlines-3]:
fe['start'] = fe['end'] = False
min_arrows = 1
if iline == nlines - 7:
min_arrows = 3
doc.draw_line(line, arrows_style={
'dist':2.0, 'fixed_ends':fe, 'min_arrows':min_arrows})
# draw a horseshoe magnet with color gradients
g = doc.draw_object('g', {'id':'horseshoe',
'transform':'translate({},{})'.format(x0, y0)})
defs = doc.draw_object('defs', {}, group=g)
grad_col = ['#000000', '#ffffff', '#ffffff', '#ffffff', '#000000']
grad_offs = sc.array([0, 0.07, 0.25, 0.6, 1])
grad_opa = sc.array([0.125, 0.125, 0.5, 0.2, 0.33])
grad1 = doc.draw_object('linearGradient', {'id':'grad1', 'x1':'0',
'x2':'1', 'y1':'0', 'y2':'0', 'gradientUnits':'objectBoundingBox'},
group=defs)
for col, of, opa in zip(grad_col, grad_offs, grad_opa):
stop = doc.draw_object('stop', {'stop-color':col, 'offset':of,
'stop-opacity':opa}, group=grad1)
grad2 = doc.draw_object('radialGradient', {'id':'grad2', 'r':str(R+r),
'cx':'0', 'cy':'0', 'fx':'0', 'fy':'0',
'gradientUnits':'userSpaceOnUse'}, group=defs)
for col, of, opa in sorted(zip(grad_col, 1-grad_offs*2.*r/(R+r), grad_opa),
key=lambda x: x[1]):
stop = doc.draw_object('stop', {'stop-color':col, 'offset':of,
'stop-opacity':opa}, group=grad2)
grad3 = doc.draw_object('radialGradient', {'id':'grad3', 'r':str(R+r),
'cx':'0', 'cy':'0', 'fx':'0', 'fy':'0',
'gradientUnits':'userSpaceOnUse'}, group=defs)
for col, of, opa in zip(grad_col, (R-r)/(R+r)+grad_offs*2.*r/(R+r), grad_opa):
stop = doc.draw_object('stop', {'stop-color':col, 'offset':of,
'stop-opacity':opa}, group=grad3)
grad4 = doc.draw_object('linearGradient', {'id':'grad4', 'x1':str(-R-r),
'x2':str(R+r), 'y1':'0', 'y2':'0', 'gradientUnits':'userSpaceOnUse'},
group=defs)
for col, of, opa in [['#ffffff', '0', '1'], ['#ffffff', str(r/(R+r)), '1'],
['#ffffff', str(R/(R+r)), '0'], ['#ffffff', '1', '0']]:
stop = doc.draw_object('stop', {'stop-color':col, 'offset':of,
'stop-opacity':opa}, group=grad4)
mask4 = doc.draw_object('mask', {'id':'mask4', 'maskContentUnits':'userSpaceOnUse'}, group=defs)
doc.draw_object('rect', {'x':str(-R-r), 'y':str(-R-r), 'width':str(2*(R+r)),
'height':str(R+r), 'style':'fill:url(#grad4); stroke:none;'}, group=mask4)
grad5 = doc.draw_object('linearGradient', {'id':'grad5', 'x1':str(-R-r),
'x2':str(R+r), 'y1':'0', 'y2':'0', 'gradientUnits':'userSpaceOnUse'},
group=defs)
for col, of, opa in [['#ffffff', '0', '0'], ['#ffffff', str(r/(R+r)), '0'],
['#ffffff', str(R/(R+r)), '1'], ['#ffffff', '1', '1']]:
stop = doc.draw_object('stop', {'stop-color':col, 'offset':of,
'stop-opacity':opa}, group=grad5)
mask5 = doc.draw_object('mask', {'id':'mask5', 'maskContentUnits':'userSpaceOnUse'}, group=defs)
doc.draw_object('rect', {'x':str(-R-r), 'y':str(-R-r), 'width':str(2*(R+r)),
'height':str(R+r), 'style':'fill:url(#grad5); stroke:none;'}, group=mask5)
d = ('M {},{} L {},{} L {},{} A {},{} {} {} {} {},{} L {},{} L {},{} ' +
'L {},{} A {},{} {} {} {} {},{} L {},{} Z').format(-R-r, h,
-R+r, h, -R+r, 0, R-r, R-r, 0, 0, 1, R-r, 0, R-r, h, R+r, h, R+r, 0,
R+r, R+r, 0, 0, 0, -R-r, 0, -R-r, h)
doc.draw_object('path', {'d':d, 'style':'fill:#ff0000; ' +
'stroke:none;'}, group=g)
d = ('M {},{} L {},{} L {},{} A {},{} {} {} {} {},{} ' +
'L {},{} A {},{} {} {} {} {},{} L {},{} Z').format(-R-r, h,
-R+r, h, -R+r, 0, R-r, R-r, 0, 0, 1, 0, -R+r, 0, -R-r,
R+r, R+r, 0, 0, 0, -R-r, 0, -R-r, h)
doc.draw_object('path', {'d':d, 'style':'fill:#00cc00;stroke:none;'},
group=g)
d = ('M {},{} L {},{} L {},{} L {},{} L {},{} Z').format(-R-r, h,
-R+r, h, -R+r, 0, -R-r, 0, -R-r, h)
doc.draw_object('path', {'d':d, 'style':'fill:url(#grad1);stroke:none;'},
group=g)
d = ('M {},{} L {},{} L {},{} L {},{} L {},{} Z').format(R-r, h,
R+r, h, R+r, 0, R-r, 0, R-r, h)
doc.draw_object('path', {'d':d, 'style':'fill:url(#grad1);stroke:none;'},
group=g)
d = ('M {},{} L {},{} A {},{} {} {} {} {},{} ' +
'L {},{} A {},{} {} {} {} {},{} Z').format(-R-r, 0, -R+r, 0,
R-r, R-r, 0, 0, 1, R-r, 0, R+r, 0, R+r, R+r, 0, 0, 0, -R-r, 0)
doc.draw_object('path', {'d':d, 'style':'fill:url(#grad2);stroke:none;',
'mask':'url(#mask4)'}, group=g)
d = ('M {},{} L {},{} A {},{} {} {} {} {},{} ' +
'L {},{} A {},{} {} {} {} {},{} Z').format(-R-r, 0, -R+r, 0,
R-r, R-r, 0, 0, 1, R-r, 0, R+r, 0, R+r, R+r, 0, 0, 0, -R-r, 0)
doc.draw_object('path', {'d':d, 'style':'fill:url(#grad3);stroke:none;',
'mask':'url(#mask5)'}, group=g)
d = ('M {},{} L {},{} L {},{} A {},{} {} {} {} {},{} L {},{} L {},{} ' +
'L {},{} A {},{} {} {} {} {},{} L {},{} Z').format(-R-r, h,
-R+r, h, -R+r, 0, R-r, R-r, 0, 0, 1, R-r, 0, R-r, h, R+r, h, R+r, 0,
R+r, R+r, 0, 0, 0, -R-r, 0, -R-r, h)
doc.draw_object('path', {'d':d, 'style':'fill:none; ' +
'stroke:#000000; stroke-width:0.04;'}, group=g)
text_N = doc.draw_object('text', {'text-anchor':'middle', 'x':'0', 'y':'0',
'transform':'translate({},{}) scale({},{})'.format(R, h-0.6, 0.04, -0.04),
'style':'fill:#000000; stroke:none; ' +
'font-size:12px; font-family:Bitstream Vera Sans;'}, group=g)
text_N.text = 'N'
text_S = doc.draw_object('text', {'text-anchor':'middle', 'x':'0', 'y':'0',
'transform':'translate({},{}) scale({},{})'.format(-R, h-0.6, 0.04, -0.04),
'style':'fill:#000000; stroke:none; ' +
'font-size:12px; font-family:Bitstream Vera Sans;'}, group=g)
text_S.text = 'S'
doc.write()
|
Lizenz
- Dieses Werk darf von dir
- verbreitet werden – vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden
- neu zusammengestellt werden – abgewandelt und bearbeitet werden
- Zu den folgenden Bedingungen:
- Namensnennung – Du musst angemessene Urheber- und Rechteangaben machen, einen Link zur Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Diese Angaben dürfen in jeder angemessenen Art und Weise gemacht werden, allerdings nicht so, dass der Eindruck entsteht, der Lizenzgeber unterstütze gerade dich oder deine Nutzung besonders.
- Weitergabe unter gleichen Bedingungen – Wenn du das Material wiedermischst, transformierst oder darauf aufbaust, musst du deine Beiträge unter der gleichen oder einer kompatiblen Lizenz wie das Original verbreiten.
In dieser Datei abgebildete Objekte
Motiv
Einige Werte ohne einen Wikidata-Eintrag
image/svg+xml
Dateiversionen
Klicke auf einen Zeitpunkt, um diese Version zu laden.
Version vom | Vorschaubild | Maße | Benutzer | Kommentar | |
---|---|---|---|---|---|
aktuell | 19:03, 7. Jul. 2018 | 600 × 600 (40 KB) | Geek3 | User created page with UploadWizard |
Dateiverwendung
Die folgende Seite verwendet diese Datei:
Globale Dateiverwendung
Die nachfolgenden anderen Wikis verwenden diese Datei:
- Verwendung auf bn.wikibooks.org
- Verwendung auf en.wikipedia.org
- Verwendung auf en.wikibooks.org
- Verwendung auf hi.wikipedia.org
- Verwendung auf pl.wikipedia.org
- Verwendung auf ru.wikipedia.org
- Verwendung auf shn.wikibooks.org
Metadaten
Diese Datei enthält weitere Informationen (beispielsweise Exif-Metadaten), die in der Regel von der Digitalkamera oder dem verwendeten Scanner stammen. Durch nachträgliche Bearbeitung der Originaldatei können einige Details verändert worden sein.
Kurztitel | VFPt_horseshoe-magnet |
---|---|
Bildtitel | VFPt_horseshoe-magnet
created with VectorFieldPlot 1.7 https://commons.wikimedia.org/wiki/User:Geek3/VectorFieldPlot about: https://commons.wikimedia.org/wiki/File:VFPt_horseshoe-magnet.svg rights: Creative Commons Attribution ShareAlike 4.0 |
Breite | 600 |
Höhe | 600 |