π-System
Ein -System, auch durchschnittstabiles Mengensystem oder kurz schnittstabiles System genannt, ist ein spezielles Mengensystem, das im axiomatischen Aufbau der Wahrscheinlichkeitstheorie und der Maßtheorie verwendet werden kann.
Definition
BearbeitenGegeben sei ein Mengensystem , also eine Teilmenge der Potenzmenge einer Grundmenge . heißt ein -System, durchschnittstabiles Mengensystem oder schnittstabiles System, wenn für beliebige zwei Mengen aus dem Mengensystem gilt, dass ist.
Beispiele
BearbeitenFür eine beliebige Grundmenge sei das Mengensystem
aller endlichen Teilmengen gegeben. Für zwei beliebige ist nun , der Schnitt endlicher Mengen ist immer endlich. Also ist auch , es handelt sich somit um ein schnittsstabiles System.
Eigenschaften
Bearbeiten- Ist das Mengensystem stabil unter Komplementbildung, so ist es genau dann durchschnittsstabil, wenn es vereinigungsstabil ist. Dies folgt direkt aus den de Morganschen Gesetzen.
- Ist das Mengensystem stabil unter Differenzmengenbildung, dann ist es auch ein π-System. Dies folgt aus .
Verwendung
BearbeitenDurchschnittsstabile Mengensysteme treten an einigen Stellen in der Wahrscheinlichkeitstheorie und Stochastik auf. So ist die Durchschnittsstabilität eine wichtige Voraussetzung an den Erzeuger einer σ-Algebra, um nur auf diesem Erzeuger die stochastische Unabhängigkeit der Zufallsvariablen überprüfen zu müssen.
Wichtigste Anwendung ist der sogenannte dynkinsche π-λ Satz. Ist ein -System, dann stimmen die von erzeugte -Algebra und das erzeugte Dynkin-System überein, es gilt also
- .
Siehe auch
BearbeitenLiteratur
Bearbeiten- Christian Hesse: Angewandte Wahrscheinlichkeitstheorie. 1. Auflage. Vieweg, Wiesbaden 2003, ISBN 3-528-03183-2, S. 20, doi:10.1007/978-3-663-01244-3.
- Heinz Bauer: Maß- und Integrationstheorie. 2., überarbeitete Auflage. de Gruyter, Berlin u. a. 1992, ISBN 3-11-013626-0.
- Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin/ Heidelberg 2013, ISBN 978-3-642-36017-6, doi:10.1007/978-3-642-36018-3.