Eigenmode

spezielle Bewegungen eines schwingungsfähigen Systems
(Weitergeleitet von Eigenschwingungsfrequenz)

Eigenmoden oder Normalmoden sind spezielle Bewegungen eines schwingungsfähigen Systems. Es handelt sich – neben der gleichförmigen Bewegung des ganzen Systems – um diejenigen periodischen Bewegungen, bei denen alle Komponenten des Systems die gleiche Frequenz zeigen, wenn das System nach einer Anregung sich selbst überlassen bleibt. Eine solche Frequenz wird als Eigenfrequenz des Systems bezeichnet, die entsprechende Eigenmode auch als Eigenschwingung, denn bei kleinen Amplituden sind es ungedämpfte harmonische Schwingungen. Jede Bewegung des Systems kann als eine Überlagerung von verschiedenen Eigenmoden dargestellt werden. Die Anzahl verschiedener Eigenmoden ist gleich der Anzahl der Freiheitsgrade des Systems.

Die Eigenmoden und -frequenzen eines Systems hängen davon ab, aus welchen Bestandteilen das System aufgebaut ist und wie diese aufeinander einwirken. Die Eigenfrequenzen der Saite eines Musikinstruments werden beispielsweise durch ihre Länge, ihr Material und ihre mechanische Spannung bestimmt. Ähnliches gilt für alle schwingungsfähigen Systeme.

Das Wort Eigenmode leitet sich ab vom englischen Mode oder lateinischen Modus, was in beiden Fällen etwa „Art und Weise“ bedeutet, und von Eigenwert, einem Begriff aus der Algebra. In der Sichtweise der theoretischen Physik bilden die Eigenmoden nämlich eine diskrete Basis, mit der alle dem System möglichen Bewegungen dargestellt werden können. Die Eigenmoden und Eigenfrequenzen ergeben sich aus den Bewegungsgleichungen des Systems als Eigenvektoren bzw. Eigenwerte dieses Gleichungssystems. Die gleichförmige Bewegung wird als eine Eigenmode mit der Frequenz Null dargestellt.

Die Lagrangefunktion eines Systems mit   Freiheitsgraden sei

 

wobei   die Massenmatrix und   das Potential ist. Bei der Näherung der Lagrangefunktion bis in zweiter Ordnung um die Gleichgewichtskoordinaten   und der Vernachlässigung des konstanten Terms wird dies zu

 

respektive mit der Koordinatentransformation   und den Abkürzungen   sowie   kurz

 

Aus den Lagrangegleichungen ergeben sich die Bewegungsgleichungen des Systems

 

wobei sowohl   als auch    -Matrizen und   ein  -dimensionaler Vektor ist. Da die kinetische Energie immer größer als Null ist, ist   positiv definit. Damit sich das System in einem stabilen oder indifferenten Gleichgewicht befindet, muss   positiv semidefinit sein. Insbesondere sind daher alle Eigenwerte von   und   nichtnegativ.

Der Lösungsansatz der Gleichung lautet:

 

Dies führt auf das verallgemeinerte Eigenwertproblem

 .

Um dieses nichttrivial zu lösen, muss die Determinante   verschwinden. Diese ist das charakteristische Polynom vom Grad   in   und besitzt daher   Nullstellen. Die Symmetrie von   und   sorgt dafür, dass die Eigenwerte alle reell sind, siehe Spektralzerlegung (Mathematik), und diese sind zudem nichtnegativ, wegen der positiven (Semi-)Definitheit der beteiligten Matrizen. Physikalisch kann dies wie folgt interpretiert werden: Angenommen, es gäbe eine Nullstelle im Negativen oder Komplexen, dann würde   einen Imaginärteil besitzen und die Lösung divergieren. Dies steht im Widerspruch zur Annahme des stabilen Gleichgewichts.

Die (positiven) Wurzeln der Nullstellen des Polynoms

 

sind die Eigenfrequenzen   des Systems, das durch   und   beschrieben wird. Ein System mit   Freiheitsgraden besitzt daher maximal   Eigenfrequenzen.

Die   Eigenschwingungen des Systems sind die   Eigenvektoren des Eigenwertproblems, die die Gleichung

 

erfüllen. Insbesondere ist jedes Vielfache eines Eigenvektors auch ein Eigenvektor. Das bedeutet, diese können normiert und mit einer komplexen Konstanten   multipliziert werden.

Fallen mehrere Eigenfrequenzen zusammen, dann hat die Gleichung nicht vollen Rang und einige Komponenten der zugehörigen   können frei gewählt werden. Hat die Matrix   einen Eigenwert null, liegt ein indifferentes Gleichgewicht vor. Dann ist auch eine Eigenfrequenz des Systems Null. In diesem Fall lautet die Eigenwertgleichung  , sodass die Lösung eine gleichförmige Bewegung des Systems ist.

Die allgemeine Lösung des Gleichungssystems für die Schwingung des Systems ist eine Superposition seiner Eigenschwingungen und gegebenenfalls einer gleichförmigen Bewegung

 

Für jeden Freiheitsgrad existieren daher entweder 2 reelle oder 1 komplexer freier Parameter. Es ergeben sich somit   Konstanten, die durch Anfangsbedingungen festgelegt werden müssen.

Normalkoordinaten

Bearbeiten

Die Normalkoordinaten   des Systems sind definiert als

 

wobei

 

ist, also die Matrix der Eigenvektoren. Diese Matrix der Eigenvektoren diagonalisiert sowohl   als auch  , denn aus der Symmetrie von   folgt

 

sodass für alle nicht entarteten Eigenwerte alle Nichtdiagonalelemente von   verschwinden müssen. Eine entsprechende Normierung der Eigenvektoren führt auf die Orthonormalitätsrelation

 

Für entartete Eigenwerte können die Eigenvektoren ebenfalls so gewählt werden, dass diese Matrix diagonal wird. Ebenfalls kann gezeigt werden, dass   auch   diagonalisiert. Mit   kann die Bewegungsgleichung als

 

geschrieben werden, sodass die Behauptung durch Multiplikation mit   von links direkt folgt.

Somit entkoppelt eine Koordinatentransformation von den Auslenkungen aus der Gleichgewichtslage   in die Normalkoordinaten   mittels   das Gleichungssystem, denn es gilt:

 

Insbesondere ist

 

Beispiele

Bearbeiten

Federpendel

Bearbeiten

Ein Federpendel ist ein System, an dem eine Masse an einer Feder aufgehängt ist und das sich nur in eine Dimension bewegen kann. Es besitzt also nur einen einzigen Freiheitsgrad, die Auslenkung aus der Ruhelage. Für das Federpendel gilt   und  , wobei   die Federkonstante und   die Masse ist. Daher vereinfacht sich die Matrixgleichung auf eine skalare Gleichung

 

mit einem Polynom ersten Grades in  

 

und einem Eigenvektor

 .

Die Lösung ist also

 

CO2-Molekül

Bearbeiten

In erster Näherung kann ein Kohlendioxid-Molekül als drei Massen angesehen werden, von denen die äußeren beiden identischen Massen   mit der mittleren Masse   durch Federn verbunden sind. Da die Bindungen beide gleichartig sind, sind die Federkonstanten beide  . Die Indizes seien so gewählt, dass die Atome von links nach rechts durchnummeriert seien und es sei ferner angenommen, dass sich das Molekül nur entlang der Molekülachse bewegen könne, das heißt, es werden nur Valenz-, aber keine Deformationsschwingungen berücksichtigt. Daher existieren drei Freiheitsgrade des Systems: Die Entfernungen der drei Massen von ihrer Gleichgewichtslage. Dann gilt mit

 
 

für die Determinante des Systems

 .

Dessen drei Nullstellen liegen bei

 

und die Eigenvektoren sind

 .

Dadurch ergibt sich die allgemeine Lösung zu

 .

Die erste Eigenschwingung ist die Translation des gesamten Moleküls, die zweite beschreibt die gegenläufige Schwingung der beiden äußeren Sauerstoffatome, während das Kohlenstoffatom in Ruhe bleibt, und die dritte die gleichförmige Schwingung der beiden äußeren, wobei das mittlere Atom gegenläufig schwingt.

Schwingende Saite

Bearbeiten

Eine schwingende Saite besitzt unendlich viele Freiheitsgrade und entsprechend auch unendlich viele Eigenfrequenzen. Diese müssen jedoch den Randbedingungen des Problems genügen. Die Wellengleichung lautet

 

wobei   die Auslenkung der Saite und   die Phasengeschwindigkeit der Welle ist. Die Lösung der Wellengleichung für ein festes   ist

 

mit  . Den Zusammenhang zwischen   und   nennt man die Dispersionsrelation des Systems. Für eine Saite ist   eine Konstante, die von der Spannung   und der linearen Massendichte   der Saite abhängt.[1]

Die Randbedingungen an die schwingende Saite ist, dass die Enden fest eingespannt sind und sich daher für eine Saite der Länge   für alle  

 

sein muss. Dies führt zu der Randbedingung

 

mit einem beliebigen   und somit abzählbar unendlich vielen verschiedenen   und entsprechend vielen  . Die Eigenfrequenzen der Saite sind daher

 

und die allgemeine Lösung der Wellengleichung ist eine Superposition über alle Eigenschwingungen:

 

Normalschwingungen von Molekülen

Bearbeiten

Ein  -atomiges Molekül hat   Freiheitsgrade. Davon sind 3 Translationsfreiheitsgrade und im Fall eines linearen Moleküls 2 bzw. im Fall eines gewinkelten Moleküls 3 Rotationsfreiheitsgrade. Somit verbleiben   bzw.   Vibrationsfreiheitsgrade, die zu Eigenfrequenzen ungleich Null korrespondieren. Die Symmetrien dieser Molekülschwingungen können durch die gruppentheoretischen Charaktertafeln beschrieben werden. Die Normalschwingungen einer entarteten, von Null verschiedenen Eigenfrequenz stellen eine Basis für eine irreduzible Darstellung der Punktgruppe des schwingenden Moleküls dar.

Beim obigen Beispiel sind die anderen beiden Normalschwingungen die vernachlässigten transversalen Schwingungen der Atome in den beiden übrigen Raumrichtungen, die sich nicht in der Linie der Atome befinden.

Quantenmechanik

Bearbeiten

In der Quantenmechanik wird der Zustand eines Systems durch einen Zustandsvektor   dargestellt, der eine Lösung der Schrödingergleichung

 

ist. Wenn der Hamiltonoperator nicht zeitabhängig ist, ist eine formale Lösung der Schrödingergleichung

 

Da der Hamiltonoperator ein vollständiges System von Eigenzuständen, den Energieeigenzuständen, besitzt, kann in diesen entwickelt werden. Mit   folgt

 

Dabei beschreiben die quantenmechanischen Eigenfrequenzen   keine Schwingung im Ortsraum, sondern eine Rotation im Hilbertraum, auf dem der Zustandsvektor definiert ist.

Technische Beispiele

Bearbeiten
 
Resonanz eines Lautsprechers
  • Eine Glocke, die angeschlagen wird, schwingt anschließend mit den Eigenfrequenzen. Durch Dämpfung klingt die Schwingung über die Zeit ab. Dabei werden höhere Frequenzen schneller abgedämpft als tiefere.
  • Eine Stimmgabel ist so konstruiert, dass außer der tiefsten Eigenfrequenz kaum weitere Eigenschwingungen angeregt werden.
  • In Gebäuden können Eigenfrequenzen angeregt werden. Wenn beim Nachbarn Musik läuft, kann es vorkommen, dass die Frequenz eines Basstons mit einer Eigenfrequenz des Raums zwischen der gemeinsamen Wand und einer parallelen Gebäudewand des eigenen Raums zusammenpasst (Raummoden). Die von der Musik angeregten Schwingungen der Wand sind dann mitunter sogar dann hörbar, wenn die Musik anhand ihrer vielen entscheidenden höherfrequenten Töne im Wesentlichen nicht wahrnehmbar wäre.
  • Trommeln haben wie die meisten Musikinstrumente mehrere Eigenfrequenzen.
  • Bei Lautsprechern verschlechtern die Partialschwingungen der Membranen die Wiedergabequalität.

Siehe auch

Bearbeiten

Einzelnachweise

Bearbeiten
  1. Harro Heuser: Gewöhnliche Differentialgleichungen. 6. Auflage. Vieweg+Teubner, 2009, ISBN 978-3-8348-0705-2, S. 293.

Literatur

Bearbeiten