Euler-Produkt
Das Euler-Produkt ist ein Begriff aus dem mathematischen Teilgebiet der Analysis und insbesondere der Zahlentheorie. Es ist eine Darstellung einer Dirichlet-Reihe mittels eines unendlichen Produktes indiziert über die Menge der Primzahlen. Benannt ist das Euler-Produkt nach Leonhard Euler, der das unendliche Produkt bezüglich der Dirichlet-Reihe der Riemannschen Zeta-Funktion untersuchte.[1]
Definition
BearbeitenSei eine multiplikative zahlentheoretische Funktion und die entsprechende Dirichlet-Reihe von . Falls diese Reihe für eine komplexe Zahl absolut konvergiert, dann gilt
- .
Im Falle einer vollständig multiplikativen Funktion vereinfacht sich dieses Produkt zu
- .
Diese unendlichen Produkte über alle Primzahlen heißen Euler-Produkte.[2] Der Wert dieser Produkte ist definiert als Grenzwert der Folge endlicher Produkte , die entsteht, indem man das Produkt nur auf Primzahlen unterhalb einer Schranke N erstreckt.
Beweis
BearbeitenEs gibt mehrere Beweise für die Gültigkeit des Euler-Produktes.
Zunächst ist klar, dass mit absoluter Konvergenz der Reihe auch jeder Faktor absolut konvergiert. Es folgt, dass für jedes das Partialprodukt
existiert. Damit sieht man sogleich mit der Cauchy-Produktformel und der aufsteigenden Folge der Primzahlen :
Im zweiten Schritt wurde die Multiplikativität von benutzt. Damit folgt
wobei der Strich an der zweiten Summe anzeigt, dass nur über alle summiert wird, deren Primteiler sämtlich sind. Damit folgt: für jedes existiert ein mit
Somit konvergiert die Folge der Partialprodukte für jedes im Bereich der absoluten Konvergenz gegen (sogar gleichmäßig auf kompakten Teilmengen) und der Satz ist gezeigt.
Das Euler-Produkt der Riemannschen Zeta-Funktion
BearbeitenFormulierung
BearbeitenIm Fall für alle ist offenbar vollständig multiplikativ. Es gilt demnach für alle
Die Funktion ist dabei auch bekannt als Riemannsche Zeta-Funktion.
Herleitung von Euler
BearbeitenDie Idee dieses Herleitungsweges wurde bereits von Euler verwendet. Man nehme eine Teilmenge und eine Primzahl , so dass und . Ist also , so folgt ebenfalls . Dann gilt ganz allgemein für
Bezeichnen wir jetzt als die Folge der Primzahlen in aufsteigender Folge, und als die Menge der Zahlen, die nicht durch teilbar sind (z. B. ). Setze zudem . Dann hat jedes die obere Eigenschaft mit der nächsten Primzahl und es gilt . Also:
und damit induktiv
Bildet man auf beiden Seiten den Limes, ergibt sich
da die 1 die einzige natürliche Zahl ist, die durch keine Primzahl teilbar ist.
Weblinks
Bearbeiten- Eric W. Weisstein: Euler Product. In: MathWorld (englisch).
- S.A. Stepanov: Euler product. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 1-55608-010-7 (englisch, encyclopediaofmath.org).
Einzelnachweise
Bearbeiten- ↑ Euler-Produkt. In: Guido Walz (Hrsg.): Lexikon der Mathematik. 1. Auflage. Spektrum Akademischer Verlag, Mannheim/Heidelberg 2000, ISBN 3-8274-0439-8.
- ↑ Rainer Schulze-Pillot: Einführung in Algebra und Zahlentheorie. 2. korrigierte und erweiterte Auflage. Springer-Verlag, Berlin, Heidelberg 2008, ISBN 978-3-540-79569-8, S. 53.