Der Satz von Floquet (nach Gaston Floquet) macht eine Aussage über die Struktur der Fundamentalmatrizen eines homogenen linearen gewöhnlichen Differentialgleichungssystems mit periodischer Koeffizientenmatrix.

Dieser Satz findet in der Schwingungslehre und in der Quantenmechanik Anwendung: die definierten Eigenzustände eines ungestörten Systems werden durch das Anlegen eines zeitlich periodischen Feldes bzw. Potentials periodisch in ihrer Energie verändert; sie entsprechen dann genau dem periodischen Anteil der Fundamentallösung und werden als Floquet-Zustände bezeichnet. Durch beispielsweise eine Fourierentwicklung dieser Zustände kann die Arbeit mit ihnen erheblich vereinfacht werden.

Angewandt auf räumlich periodische Potentiale ist der Satz von Floquet in der Quantentheorie besser unter dem Namen Bloch-Theorem bekannt. Die Eigenzustände heißen hier Bloch-Funktionen.

Formulierung

Bearbeiten

Jede Fundamentalmatrix   des homogenen linearen Differentialgleichungssystems

 

mit stetiger  -periodischer Koeffizientenmatrix   lässt sich schreiben in der Form

 

worin

  •   stetig differenzierbar und  -periodisch
  •   eine konstante Matrix ist.
  •   die Matrixexponentialfunktion.

Begnügt man sich damit, dass   nur  -periodisch ist, so können   reell-wertig gewählt werden.

Die Transformation

 

überführt das Differentialgleichungssystem in eines mit konstanten Koeffizienten:

 

Literatur

Bearbeiten
  • Carmen Chicone: Ordinary Differential Equations with Applications. 2. Auflage. Texts in Applied Mathematics 34. Springer-Verlag, 2006, ISBN 0-387-30769-9.
  • Gerald Teschl: Ordinary Differential Equations and Dynamical Systems (= Graduate Studies in Mathematics. Band 140). American Mathematical Society, Providence 2012, ISBN 978-0-8218-8328-0 (mat.univie.ac.at).