Modell harter Kugeln

Modell der statistischen Mechanik
(Weitergeleitet von Hartkugelmodell)

Harte Kugeln sind ein häufig verwendetes Teilchenmodell für Fluide und Festkörper in der statistischen Mechanik. Sie sind definiert als nicht-durchdringbare Kugeln im Raum, die sich nicht überlappen können, und modellieren die starke Abstoßung, die Atome und kugelförmige Moleküle auf sehr kleinen Distanzen zueinander erfahren. Untersucht werden harte Kugeln mittels analytischer Methoden, durch Simulation molekularer Dynamik sowie die experimentelle Untersuchung von bestimmten Kolloid-Modellsystemen. Siehe auch Hard-core-Prozess.

Formale Definition

Bearbeiten

Harte Kugeln mit Durchmesser   sind Teilchen mit dem folgenden paarweisen Wechselwirkungspotential:

 

wobei   und   die Positionen der beiden Teilchen beschreiben.

Harte-Kugeln-Modell für ein Gas

Bearbeiten

Die ersten drei Virialkoeffizienten für harte Kugeln können analytisch ermittelt werden:

  =  
  =  
  =  

Koeffizienten höherer Ordnung können durch Monte-Carlo-Integration numerisch gefunden werden. Beispielhaft seien die folgenden aufgelistet:

  =  
  =  
  =  

Eine Tabelle von Virialkoeffizienten für bis zu acht Dimensionen können im SklogWiki[1] gefunden werden.

Das Harte-Kugeln-System bildet einen Flüssig-Fest-Phasenübergang zwischen den Packungsdichten für Gefrieren   und Schmelzen  . Der Druck divergiert bei der dichtesten Zufallspackung   für den metastabilen Flüssigkeitszweig und bei dichtesten Kugelpackung   für den stabilen festen Zweig.

Harte-Kugeln-Modell für eine Flüssigkeit

Bearbeiten

Der Strukturfaktor für eine Flüssigkeit aus harten Kugeln kann über die Percus-Yevick-Näherung berechnet werden.

 
Phasendiagramm eines Systems harter Kugeln (Durchgezogene Line – stabiler Ast, gestrichelte Line – metastabiler Ast): Druck   als Funktion der Packungsdichte (Kristallographie)  

Verallgemeinerungen

Bearbeiten

Nicht nur Kugeln können mit einem harten Wechselwirkungspotential ausgestattet werden, sondern auch Körper beliebiger Geometrie.

Literatur

Bearbeiten
  • J. P. Hansen, I. R. McDonald: Theory of Simple Liquids. 4. Auflage, Academic Press, London 2013, ISBN 978-0-12-387032-2.
Bearbeiten

Einzelnachweise

Bearbeiten
  1. Hard sphere: virial coefficients page. In: SklogWiki – a wiki for statistical mechanics and thermodynamics. 20. Mai 2014, abgerufen am 20. Juli 2015 (englisch).