Möndchen des Hippokrates
Mit den Möndchen des Hippokrates, die dem griechischen Mathematiker Hippokrates von Chios (um 450 v. Chr.) zugeschrieben werden, konnte man bereits im antiken Griechenland nachweisen, dass auch krummlinig begrenzte Flächenstücke durch rationale Zahlen berechnet werden können.
Beweis
BearbeitenNach dem Satz des Pythagoras ist die Summe der Flächen der Kathetenquadrate eines rechtwinkligen Dreiecks gleich der Fläche des Hypotenusenquadrats. Nach dem verallgemeinerten Satz des Pythagoras gilt dieser Zusammenhang auch für andere zueinander ähnliche Figuren. Für Halbkreise bedeutet das: Die Flächensumme der Halbkreise über den Katheten entspricht der Fläche des Halbkreises über der Hypotenuse (Schritt 1).[1]
Spiegelt man den Halbkreis über der Hypotenuse, so überlappt dieser mit den beiden Kathetenhalbkreisen, wobei der Kreisbogen nach dem Satz des Thales durch den Punkt C geht (Schritt 2).
Entfernt man die überlappenden Kreissegmente (Schritt 3), verbleiben vom Hypotenusenhalbkreis das Dreieck selbst und von den beiden Kathetenhalbkreisen die beiden sichelförmigen äußeren Kreisteile, die Möndchen.
Es gilt:
und
Aus
folgt dann:
Varianten
BearbeitenEs gibt die verschiedensten Varianten und Möglichkeiten der Verallgemeinerung des Satzes von Pythagoras und der Möndchen des Hippokrates. Neben dem bereits genannten rechtwinkligen Dreieck ist das folgende Quadrat, über dessen vier Quadratseiten jeweils ein Möndchen ist, ein weiteres Beispiel.[2]
Siehe auch
BearbeitenLiteratur
Bearbeiten- Egmont Colerus: Vom Einmaleins zum Integral. Mathematik für jedermann. Rowohlt, Reinbek 1982, ISBN 3-499-16692-5 (Kapitel: Problem der Quadratur, S. 249 in Ausgabe Paul Zsolnay Verlag, 1934).
- Paul Karlson: Vom Zauber der Zahlen. Eine unterhaltsame Mathematik für jedermann. Ullstein, Berlin 1954, S. 140.
- Hans Wußing: 6000 Jahre Mathematik. Springer, Berlin u. a. 2008, ISBN 978-3-540-77189-0, S. 172 ff.
- Lunŭlae Hippocrătis. In: Meyers Großes Konversations-Lexikon. 6. Auflage. Band 12: L–Lyra. Bibliographisches Institut, Leipzig / Wien 1908, S. 860–861 (Digitalisat. zeno.org).
Weblinks
Bearbeiten- Klaus Volkert: Die Möndchen des Hippokrates. Skript, math.uni-wuppertal.de
Einzelnachweise
Bearbeiten- ↑ Oskar Becker: Das mathematische Denken der Antike; III. Mathematik des 5. Jahrhunderts, 3. Lunulae Hyppocratis. Vandenhoeck & Ruprecht, Göttingen 1966, S. 58 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ Thomas Heath: A History of Greek Mathematicus, (a) Hippocrates’s quadrature of lunes. Band 1. The Clarendon Press, Oxford 1921, S. 183 ff. Abb. S. 185 (englisch, wilbourhall.org [PDF]).