First-order second-moment Methode

(Weitergeleitet von MVFOSM)

In der Wahrscheinlichkeitstheorie ist die first-order second-moment Methode (kurz FOSM), auch mean value first-order second-moment Methode (kurz MVFOSM) genannt, ein Näherungsverfahren zur Ermittlung der stochastischen Momente einer Funktion mit zufallsverteilten Eingangsgrößen. Die englische Bezeichnung ergibt sich aus der Herleitung, in der eine Taylorreihe erster Ordnung (first-order) und die ersten beiden Momente (second moment) der Eingangsgrößen verwendet werden.[1]

Approximation

Bearbeiten

Gegeben sei die Zielfunktion  , wobei der Vektor   eine Realisierung des Zufallsvektors   mit der Wahrscheinlichkeitsdichtefunktion   ist. Da   zufallsverteilt ist, ist auch   zufallsverteilt. Die FOSM-Methode approximiert den Erwartungswert der Zielfunktion zu

 

Die Varianz von   ist laut FOSM-Methode näherungsweise

 

wobei   die Länge/Dimension von   und   die partielle Ableitung am Mittelwertvektor nach dem i-ten Eintrag von   ist.

Herleitung

Bearbeiten

Die Zielfunktion wird durch eine Taylorreihe am Mittelwertvektor   approximiert.

 

Der Erwartungswert von   ist durch das folgende Integral gegeben.

 

Setzt man die Taylorreihe ein, erhält man

 

Die Varianz von   ist durch das folgende Integral gegeben.

 

Mit dem Verschiebungssatz erhält man

 

Einsetzen der Taylor-Reihe liefert

 

Approximation höherer Ordnung

Bearbeiten

Folgende Abkürzungen werden eingeführt.

 

Im Folgenden wird angenommen, dass die Einträge von   unabhängig sind. Berücksichtigt man in der Taylorreihe auch die Terme zweiter Ordnung, dann ergibt sich die Näherung für den Erwartungswert zu

 

Die Näherung zweiter Ordnung der Varianz ist gegeben durch

 

Die Schiefe von   kann aus dem dritten zentralen Moment   bestimmt werden. Berücksichtigt man nur lineare Terme der Taylorreihe, aber höhere Momente der Eingangsgrößen, dann ergibt sich das dritte zentrale Moment näherungsweise zu

 

Für die Approximation zweiter Ordnung des dritten zentralen Moments sowie für die Herleitung aller Approximationen höherer Ordnung sei auf Anhang D von Ref.[2] verwiesen. Berücksichtigt man die quadratischen Terme der Taylorreihe und die Momente dritter Ordnung des Zufallsvektors, wird dies auch als second-order third-moment Methode bezeichnet.[3] Die vollständige Approximation zweiter Ordnung der Varianz beinhaltet jedoch auch Momente vierter Ordnung, und die vollständige Approximation zweiter Ordnung der Schiefe beinhaltet Momente 6ter Ordnung.[2]

Praktische Anwendung

Bearbeiten

In der Literatur finden sich diverse Beispiele, bei denen die FOSM-Methode genutzt wird, um die stochastische Verteilung der Beullast von axialbelasteten Strukturen zu bestimmen (siehe bspw. Ref.[4][5][6][7]). Für Strukturen, die sehr sensitiv gegenüber Abweichungen von der idealen Struktur sind (wie Kreiszylinderschalen), wurde vorgeschlagen die FOSM-Methode als Bemessungsmethode zu verwenden. Häufig wird die Anwendbarkeit durch Vergleich mit Monte-Carlo-Simulationen überprüft. In der Ingenieuranwendung liegt die Zielfunktion oft nicht als analytische Funktion vor, sondern ist beispielsweise das Ergebnis einer Finite-Elemente-Simulation. In diesem Fall können die Ableitungen mittels zentraler Differenzen approximiert werden. Die Zielfunktion muss daher   mal ausgewertet werden. Abhängig von der Anzahl der Zufallsgrößen kann dies eine signifikant geringere Anzahl von Auswertungen sein, als es für eine Monte-Carlo-Simulation notwendig ist. Im Rahmen eines Bemessungsverfahrens muss eine untere Bemessungsgrenze bestimmt werden, die sich aus der FOSM-Methode jedoch nicht direkt ergibt. Daher muss für die Zielfunktion unter Berücksichtigung des ermittelten Erwartungswerts, der Varianz und der Schiefe ein Verteilungstyp gewählt werden.

Literatur

Bearbeiten
  1. A. Haldar und S. Mahadevan, Probability, Reliability, and Statistical Methods in Engineering Design. John Wiley & Sons New York/Chichester, UK, 2000.
  2. a b B. Kriegesmann, "Probabilistic Design of Thin-Walled Fiber Composite Structures", Mitteilungen des Instituts für Statik und Dynamik der Leibniz Universität Hannover 15/2012, ISSN 1862-4650, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany, 2012, PDF; 10,2MB.
  3. Y. J. Hong, J. Xing, and J. B. Wang, "A Second-Order Third-Moment Method for Calculating the Reliability of Fatigue", Int. J. Press. Vessels Pip., 76 (8), pp 567–570, 1999.
  4. I. Elishakoff, S. van Manen, P. G. Vermeulen, und J. Arbocz, "First-Order Second-Moment Analysis of the Buckling of Shells with Random Imperfections", AIAA J., 25 (8), pp 1113–1117, 1987.
  5. I. Elishakoff, "Uncertain Buckling: Its Past, Present and Future", Int. J. Solids Struct., 37 (46–47), pp 6869–6889, Nov. 2000.
  6. J. Arbocz und M. W. Hilburger, "Toward a Probabilistic Preliminary Design Criterion for Buckling Critical Composite Shells", AIAA J., 43 (8), pp 1823–1827, 2005.
  7. B. Kriegesmann, R. Rolfes, C. Hühne, und A. Kling, "Fast Probabilistic Design Procedure for Axially Compressed Composite Cylinders", Compos. Struct., 93, pp 3140–3149, 2011.