Unter Relief (frz. für „das Hervorgehobene“) oder Georelief versteht man in der Geologie und Geographie die Oberflächengestalt der Erde, d. h. die Form des Geländes, die mit verschiedenen Parametern (vor allem den absoluten- und relativen Höhen sowie den Hangneigungen und Abständen zwischen den Einzelformen) beschrieben werden kann. Das Relief entsteht durch die Einwirkung innerer (endogener) und äußerer (exogener) Kräfte auf die Erde.
Endogene Kräfte
BearbeitenKräfte, die aus dem Erdinneren wirken (innenbürtige Kräfte): Die Erdkruste setzt sich nach der Theorie der Plattentektonik aus einer Anzahl größerer und kleiner Platten zusammen, die durch Magmaströme (Konvektionsströme) ihre Lage verändern und für Gebirgsbildung, Vulkanismus und Erdbeben verantwortlich sind. Wo Platten aufeinanderstoßen, entstehen große Faltengebirge und Tiefseerinnen. Durch Ausgleichsbewegungen werden einzelne Gebirgsteile blockartig zu Horsten emporgehoben. Andere Teile wiederum sinken ab. Dadurch entstehen Gräben und Becken.
Exogene Kräfte
BearbeitenKräfte, die von außen auf die Oberfläche der Erde wirken (außenbürtige Kräfte): Die durch endogene Kräfte geschaffenen Gesteinsformationen werden durch die exogenen Kräfte stetig abgebaut (Verwitterung), abgetragen (Erosion) und abgelagert (Sedimentation). Äußere Kräfte sind etwa Wasser, Wind, Eis oder Lebewesen, vor allem Pflanzen. Auch der Mensch ist mittlerweile zu einem reliefbildenden Faktor geworden, indem er großflächige Geländemodellierungen durchführt, die Erosion beeinflusst oder Landgewinnung betreibt.
Makrorelief
BearbeitenEine weitgehende Zusammenfassung der verschiedenen Landformen zu möglichst wenig Kategorien führt zum Makrorelief der irdischen Landflächen. Im Gegensatz zu den klassischen physischen oder Reliefkarten bieten Karten mit dem Makrorelief (wie die hier gezeigte) mehr Informationen, da sie nicht nur auf der Meereshöhe beruhen, sondern verschiedene Cluster aus absoluter und relativer Höhe (sowie zum Teil der Hangneigung) abbilden. Da es keine festliegende Zahl von Kategorien oder allgemein anerkannte Definitionen für sie gibt, fällt die Darstellung im Detail unterschiedlich aus.[Hinweis 1]
Die hier genannten Grenzwerte und die daraus folgende Darstellung in der Weltkarte beruhen auf EDV-gestützten Auswertungen umfangreicher Satellitendaten.[1][2]
Farbe | Bezeichnung | absolute Höhen 1. Kartengrundlage 2. (andere Autoren) |
relative Höhen*[3] 1. Kartengrundlage 2. (andere Autoren) |
durchschnittliche Hangneigungen |
Beschreibung dieser Festlegung |
---|---|---|---|---|---|
| Tiefebenen | 0–200 m[4] (0–30 m)[5] |
0–25 m (0–50 m)[6] |
0–2 % | Gebiete mit geringem Höhenunterschied. Sie werden von Sedimenten aus dem jüngeren Erdmittelalter (Mesozoikum) und aus der Erdneuzeit (Känozoikum) bedeckt; oft Küstenebenen und Stromlandschaften |
| Mittelhohe Ebenen & Tafelland | 200–500 m | 0–25 m | 0–2 % | Ebenen: Gebiete mit sehr geringem Höhenunterschied – innerhalb der Flachländer / Tafelland: horizontal angeordnete Gesteinsschichten, regional schräggestellt |
| Hochebenen | > 500 m | 0–25 m | 0–2 % | Flachland oder leicht hügeliges Gelände mit geringem Reliefunterschied innerhalb von Plateaulandschaften |
| Hügelland | 0–500 m (30–200 m)[5] |
25–100 m (50–200 m)[6] |
2–10 % | Tiefland mit deutlich welligem Relief und selten schroffen Formen aus unregelmäßig verteilten, rundlich-niedrigen Erhebungen; oft Schwellen- und Randgebirge; entstanden in der Erdurzeit (Präkambrium) und in der Eiszeit überformt |
| Vorgebirgs-Plateaus | 500–2000 m | 25–200 m | 2–10 % | zu einem Randgebirge hin über dutzende bis hunderte Kilometer leicht ansteigendes, gering strukturiertes Gelände |
| Innermontane Plateaus & Plateaugebirge | 200/500–2000 m | 50–200 m | 2–40 % | allseits von höheren Gebirgen umgebene Hochebenen mit deutlich niedrigeren Bergen oder Hügeln sowie eher flachen Gipfelregionen von Tafelbergen mit jäh abfallenden Rändern |
| Innermontane Hochplateaus | 2000–6000 m | 50–200 m | 2–40 % | allseits von sehr hohen Hochgebirgen umgebene, gebirgige Hochländer mit deutlich niedrigeren Bergen oder Hügeln. |
| Rumpfflächen & Bergland | 200–500 m | 100–250 m (200–500 m)[6] |
2–40 % | sehr alte, weitgehend abgetragene Gebirge: Hochflächen mit tief eingeschnittenen Tälern sowie abgeflachte Mittelgebirge |
| Mittelgebirge | 300/600–800/1000 m[7] (200–1000[5]) |
250–750 m[2] (200[6]/500[8]-1000 m) |
10–40 % | eher runde, weit gespannte Bergformen, nur lokal mit Felsaufschlüssen in regelmäßig angeordneten Höhenzügen; oft Plateaucharakter oder Schichtstufenlandschaften |
| Hochgebirge | > 800/1000 m (> 1000/[5]1500[9]/2000[10]) |
> 750 m[2] (> 1000 m[6][8][11]/ 1500 m[12]) |
35–60 % | steile und schroffe Bergformen mit offenem Fels, Graten und Zinnen in meist linear angeordneten Bergketten, meist über die Schneegrenze aufragend und meistens mit glazialer Entstehungsgeschichte. |
*) = bezogen auf einen Radius von 5 km
Weblinks
BearbeitenAnmerkungen
Bearbeiten- ↑ vergleiche etwa die drei Darstellungen des Global Mountain Explorer – Erfassung der Gebirge der Erde auf zoombaren Karten. Ein Gemeinschaftsprojekt von Mountain Research Initiative (MRI), Center for Development and the Environment (CDE) sowie United States Geological Survey und Environmental Systems Research Institute (ESRI) im Rahmen der Initiative Global Earth Observations - Global Network for Observation and Information in Mountain Environments (GEO-GNOME)
Einzelnachweise
Bearbeiten- ↑ Michel Meybeck, Pamela Green, Charles Vörösmarty: A New Typology for Mountains and Other Relief Classes, in Mountain Research and Development, Vol. 1, Nr. 1, 1. Februar 2001, S. 34–45, doi:10.1659/0276-4741(2001)021[0034:ANTFMA]2.0.CO;2.
- ↑ a b c Deniz Karagulle, Charlie Frye, Roger Sayre, Sean Breyer, Peter Aniello, Randy Vaughan und Dawn Wright: A New High-Resolution Map of World Mountains and an Online Tool for Visualizing and Comparing Characterizations of Global Mountain Distributions, in Mountain Research and Development, Vol. 38, Nr. 3, August 2018, S. 240–249. DOI:10.1659/MRD-JOURNAL-D-17-00107.1.
- ↑ Meybeck et al. 2001, wenn nichts anderes angegeben.
- ↑ Meybeck et al. / ebenso bei Siegfried Passarge (1921) – in Stefan Rasemann: Geomorphometrische Struktur eines mesoskaligen alpinen Geosystems, Dissertation, Bonn 2003, pdf-Version ( des vom 19. April 2021 im Internet Archive) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis. , S. 16–17.
- ↑ a b c d Hagedorn & Poser (1974) – laut Wahib Sahwan: Geomorphologische Untersuchungen mittels GIS- und Fernerkundungsverfahren unter Berücksichtigung hydrogeologischer Fragestellungen - Fallbeispiele aus Nordwest Syrien, Dissertation 12. Februar 2008, Online-Zugang, abgerufen am 13. Februar 2021, S. 70.
- ↑ a b c d e Siegfried Passarge (1921) – in Stefan Rasemann: Geomorphometrische Struktur eines mesoskaligen alpinen Geosystems, Dissertation, Bonn 2003, pdf-Version ( des vom 19. April 2021 im Internet Archive) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis. , S. 16–17.
- ↑ Valerie Kapos, Jonathan Rhind, Mary Edwards, Martin F. Price und Corinna Ravilious: Developing a map of the world’s mountain forests, in: M. Price und N. Butt (Hrsg.): Forests in Sustainable Mountain Development: A State of Knowledge Report for 2000. IUFRO, Research Series 5, CAB International Publishing, New York 2000, DOI:10.1007/1-4020-3508-X_52, S. 3. – sowie – Karagülle et al. im Rückbezug auf absolute Werte nach floodmap.net
- ↑ a b Andreas Heitkamp: Mehr als nur die Höhe, Der Versuch einer Typologie, Kapitel im Dossier Gebirgsbildung auf scinexx.de, 26. November 2004, abgerufen am 17. Juni 2020.
- ↑ Norbert Krebs (1922), Alexander Supan (1930), Alfred Philippson (1931) sowie John Gerrard (1990) – in Stefan Rasemann: Geomorphometrische Struktur eines mesoskaligen alpinen Geosystems, 2003
- ↑ Carl Sonklar (1873) – in Stefan Rasemann: Geomorphometrische Struktur eines mesoskaligen alpinen Geosystems, 2003
- ↑ Albrecht Penck (1894), Norbert Krebs (1922), Edwin H. Hammond (1964), Dietrich Barsch & Nel Caine (1984) sowie John Gerrard (1990) – in Stefan Rasemann: Geomorphometrische Struktur eines mesoskaligen alpinen Geosystems, 2003
- ↑ Christoph Jentsch & Herbert Liedtke (1980) – in Stefan Rasemann: Geomorphometrische Struktur eines mesoskaligen alpinen Geosystems, 2003