Mittelpunktsregel

Quadraturformel für numerische Integration
(Weitergeleitet von Mittelpunktregel)

Die Mittelpunktsregel (auch: Rechteckregel oder Tangenten-Trapezregel) ist ein numerisches Verfahren zur näherungsweisen Berechnung von Integralen (Numerische Quadratur). Sie beruht auf der fortlaufenden Summation eng benachbarter Mittelwerte der zu integrierenden Funktion.

Mittelpunktsregel
Tangenten-Trapezregel

Beschreibung

Bearbeiten

Boxregel

Bearbeiten

Bei der linksseitigen (Linke-Box-Regel) bzw. rechtsseitigen Boxregel (Rechte-Box-Regel) wird die Intervalllänge   mit dem Funktionswert der zu integrierenden Funktion am linken bzw. rechten Randpunkt multipliziert:

 .

Die Boxregel spielt eine wichtige Rolle bei der Herleitung des Riemann-Integrals. Die linksseitige Boxregel entspricht den Untersummen und die rechtsseitige Boxregel stimmt mit den Obersummen überein. Ferner ist sie mit dem einseitigen Differenzenquotienten vergleichbar.

Die Boxregel ist exakt für Polynomfunktionen von Grad höchstens 0 (also für konstante Funktionen) und damit von Ordnung 1.

Mittelpunktsregel

Bearbeiten

Man nimmt dabei den Mittelpunkt   des Intervalls   und multipliziert die Intervallbreite   mit dem Funktionswert des Integranden an dieser Stelle, um einen Näherungswert des Integrals zu erhalten:

 .

Dreht man im oben stehenden Bild der Mittelpunktsregel die horizontale Gerade im Punkt   gegen den Uhrzeigersinn, so erhält man die Tangente für den Punkt  . Es ergibt sich das Bild der Tangenten-Trapezregel. Da das so erhaltene Trapez den gleichen Flächeninhalt wie das Rechteck besitzt, sind somit die Mittelpunktsregel und die Tangenten-Trapezregel nur verschiedene geometrische Deutungen der gleichen Quadraturformel.

Die Mittelpunktsregel ist exakt für Polynomfunktionen von Grad höchstens 1 (d. h. für affin-lineare Funktionen) und folglich von Ordnung 2.

Für konkave Funktionen liefert die Tangententrapezformel eine bessere Näherung als die Sehnentrapezformel.

Grafisch veranschaulicht bedeutet dies, dass die nicht ausgeschöpfte gelbe Fläche oberhalb des Funktionsgraphen bei der Tangententrapezformel kleiner ist als die nicht ausgeschöpfte gelbe Fläche unterhalb des Funktionsgraphen bei der Sehnentrapezformel.[1]

 

Bei der zusammengesetzten Mittelpunktsregel oder der zusammengesetzten Tangenten-Trapezformel wird nun das Intervall   in   äquidistante Teilintervalle der Breite   aufgeteilt. Anschließend führt man die Mittelpunktsregel für jedes der Teilintervalle aus und summiert die Flächen auf. Dies führt zur Gleichung:[2]

 .

Beispiel

Bearbeiten

Es sei eine Funktion   (der natürliche Logarithmus) im Intervall   zu integrieren. Dazu wäre die Berechnung des Integrals   nötig. Die allgemeine Lösung ist:

 .

Demnach ist  

Bei der Nutzung der zusammengesetzten Mittelpunktsregel mit vier Teilintervallen ergibt sich Folgendes:

  1. Zerlegung des Intervalls   in vier Teilintervalle:   und   mit den Intervallmitten 2,5, 3,5, 4,5 und 5,5.
  2. Berechnung von:  
  3. Es gilt also  .
Bearbeiten

Einzelnachweise

Bearbeiten
  1. Roger B. Nelsen: Beweise ohne Worte, Deutschsprachige Ausgabe herausgegeben von Nicola Oswald, Springer Spektrum, Springer-Verlag Berlin Heidelberg 2016, ISBN 978-3-662-50330-0, Seite 170
  2. Hans Petter Langtangen: A Primer on Scientific Programming with Python. 3. Auflage. Springer, Berlin/Heidelberg 2012, ISBN 978-3-642-30293-0.