Satz von Pappos

mathematischer Satz
(Weitergeleitet von Satz von Pappus)

Der Satz von Pappos (Pappus), gelegentlich auch Satz von Pappos-Pascal genannt, ist ein zentraler Satz in der affinen und projektiven Geometrie.[1] Er tauchte erstmals als Proposition 139 im VII. Buch der Mathematischen Sammlungen des antiken griechischen Mathematikers Pappos von Alexandria auf.[2] Blaise Pascal fand im 17. Jahrhundert eine Verallgemeinerung des Satzes, den nach ihm benannten Satz von Pascal, bei dem die sechs Grundpunkte des Satzes auf einem Kegelschnitt liegen.

Satz von Pappos: projektive Form

Der Satz lautet in seiner allgemeineren projektiven Form:

Liegen sechs Punkte einer projektiven Ebene abwechselnd auf zwei Geraden und , so sind die Punkte

kollinear, d. h., sie liegen auf einer Geraden (siehe Bild).

Satz von Pappos: affine Form

Sind die beiden Geraden und durch die Sechseckpunkte und die Gerade kopunktal, so spricht man auch vom kleinen Satz von Pappos.

Da sich zwei Geraden in einer affinen Ebene nicht unbedingt schneiden, wird der Satz zusätzlich noch in einer spezielleren affinen Form formuliert:

Liegen sechs Punkte einer affinen Ebene abwechselnd auf zwei Geraden und und sind sowohl das

Geradenpaar als auch das
Geradenpaar parallel,

so sind auch und parallel (s. Bild).

Im projektiven Abschluss der zugrunde liegenden affinen Ebene schneiden sich die drei parallelen Geradenpaare auf der uneigentlichen Geraden , und es entsteht die projektive Form des Satzes von Pappos.

Beweis des Satzes in einer affinen Ebene über einem Körper

Bearbeiten
 
Satz von Pappos: Beweis

Wegen der Parallelität in einer affinen Ebene muss man zwei Fälle unterscheiden, je nachdem, ob die Geraden   sich schneiden oder nicht. Der Schlüssel zu einem einfachen Beweis ist die immer mögliche geeignete Koordinatisierung der affinen Ebene. Denn in einem 2-dimensionalen Vektorraum kann man den Nullpunkt und zwei (linear unabhängige) Basisvektoren frei wählen.

Fall 1: Die beiden Geraden   schneiden sich und es sei  .
In diesem Fall lassen sich Koordinaten so einführen, dass   ist (s. Bild). Die Punkte   haben dann Koordinaten  . Da die Geraden   parallel sind, gilt  . Aus der Parallelität der Geraden   folgt dann, dass   sein muss. Also hat die Gerade   die Steigung   und ist damit parallel zu  .

Fall 2:  .
In diesem Fall werden die Koordinaten so gewählt, dass   ist. Aus den Parallelitäten   und   folgt   und   und damit die Parallelität  .

Dualer Satz von Pappos

Bearbeiten

Aufgrund des Dualitätsprinzips für projektive Ebenen gilt auch der duale Satz von Pappos:

Gehören sechs Geraden   einer projektiven Ebene abwechselnd zwei Geradenbüschel durch zwei Punkte   an, so sind die Geraden

 
 
 

kopunktal, d. h., sie gehen durch einen gemeinsamen Punkt  . Das linke Bild zeigt die projektive Version, das rechte Bild eine affine Version, bei der die Punkte   auf der Ferngeraden liegen.

Ist in der affinen Version des dualen Satzes von Pappos Punkt   auch ein Fernpunkt, so entsteht die duale Aussage des kleinen Satzes von Pappos, die mit dem Satz von Thomsen aus der elementaren Dreiecksgeometrie identisch ist. Die Thomsen-Figur spielt bei der Koordinatisierung einer axiomatisch definierten projektiven Ebene eine wesentliche Rolle.[3] Der Beweis für das Schließen der Thomsen-Figur folgt aus dem obigen Beweis des kleinen Satzes von Pappus. Der direkte Beweis ist aber auch sehr einfach:

Da die Formulierung des Schließungssatzes von Thomsen nur die Begriffe Verbinden, Schneiden und parallel verwendet, ist der Satz affin invariant und man kann zum Beweis annehmen, dass   gilt (siehe Bild). Der Startpunkt für den Streckenzug ist der Punkt  . Man rechnet leicht die Koordinaten der restlichen Punkte aus und erkennt, dass der 7. Punkt wieder der Anfangspunkt ist.

Bedeutung: Pappossche Ebenen

Bearbeiten

Der Satz von Pappos gilt nicht in jeder projektiven Ebene. Er gilt nur in solchen Ebenen, die sich mit Hilfe eines (kommutativen) Körpers koordinatisieren lassen. Umgekehrt folgt aus der Gültigkeit des Satzes von Pappos die Koordinatisierbarkeit der Ebene mit einem Koordinatenkörper. Solche Ebenen, affin oder projektiv, sind also durch den Satz von Pappos gekennzeichnet und heißen pappossche Ebenen.[4]

Für einen Überblick über affine und projektive Ebenen, in denen der Satz von Pappos oder schwächere Schließungssätze allgemein gelten, und die Folgerungen, die sich damit jeweils für die algebraische Struktur des Koordinatenbereiches ergeben, siehe die Artikel „Ternärkörper“ und „Klassifikation projektiver Ebenen“.

Der projektive Satz von Pappos als Axiom und äquivalente Aussagen

Bearbeiten

Wie schon im Abschnitt Bedeutung erläutert, ist der projektive Satz von Pappos unabhängig von den Inzidenzaxiomen einer projektiven Ebene, daher wird er bzw. zu ihm (auf Grundlage der Inzidenzaxiome) gleichwertige Aussagen auch als ein Axiom, hier abgekürzt als (PA), bezeichnet. Dieses Axiom ist auch unabhängig vom Fano-Axiom, hier kurz (FA), denn es existieren

  • projektive Ebenen   über jedem kommutativen Körper   mit einer von 2 verschiedenen Charakteristik. Sie erfüllen (FA) und (PA),
  • projektiven Ebenen   über jedem kommutativen Körper   mit Charakteristik 2. Sie erfüllen (FA) nie, aber stets (PA),
  • projektive Ebenen  , die nicht pappossch sind und auch nicht (FA) erfüllen, da es nichtkommutative Schiefkörper   mit der Charakteristik   zu jeder Primzahl  , also auch solche mit der Charakteristik 2 gibt,[5]
  • projektive Ebenen  , die nicht pappossch sind, aber (FA) erfüllen, da es zu jeder ungeraden Primzahlcharakteristik   und zur Charakteristik 0 je wenigstens einen nichtkommutativen Schiefkörper gibt.[5]

→ Vergleiche dazu auch den Satz von Gleason und den Satz von Hanna Neumann in Fano-Axiom#AntiFano.

Folgende synthetische und analytische Aussagen über eine projektive Ebene   sind äquivalent:

  1.   ist pappossch.
  2.   ist desarguessch und der Koordinatenschiefkörper von   ist kommutativ.[6]
  3. Einer der oder gleichwertig jeder Koordinatenternärkörper von   ist zu einem kommutativen Körper isomorph.[7]
  4. Es existiert eine Gerade   in  , so dass die affine Ebene   den affinen Satz von Pappos erfüllt.[7]
  5. Die vorige Aussage gilt für jede Gerade der Ebene.[7]

Zusammenhang mit dem Satz von Desargues: Satz von Hessenberg

Bearbeiten

Als Satz von Hessenberg wird in der projektiven Geometrie die Aussage

In einer projektiven Ebene, in der der Satz von Pappos allgemeingültig ist, ist auch der Satz von Desargues allgemeingültig.

bezeichnet. Dieser Satz wurde von Gerhard Hessenberg, nach dem er benannt ist, 1905[8] (lückenhaft)[6] bewiesen. Er ist von fundamentaler Bedeutung für die synthetische Geometrie. Ein vollständiger Beweis (über verschiedene Hilfssätze) findet sich im Lehrbuch von Lüneburg.[6]

Das heißt: Aus dem Axiom von Pappos (PA) folgt das Axiom von Desargues. Dass die Umkehrung im Allgemeinen (genauer: für unendliche projektive Ebenen) falsch ist, ist durch die Existenz von projektiven Ebenen über nichtkommutativen Schiefkörpern erwiesen.

Folgerung für endliche Ebenen aus dem Satz von Hessenberg
Mit dem Satz von Wedderburn folgt, dass für endliche projektive oder affine Ebenen der Satz von Pappos und der Satz von Desargues äquivalent sind.

Literatur

Bearbeiten

Zur Geschichte des Satzes von Pappos

  • Harold Scott MacDonald Coxeter mit S. L. Greitzer: Zeitlose Geometrie. Klett, Stuttgart 1983, ISBN 3-12-983390-0.
  • Carl Immanuel Gerhardt: Die Sammlung des Pappus von Alexandrien, griechisch und deutsch in 2 Bänden. H. W. Schmidt, Halle / Eisleben (1871, 1875).
  • Thomas Heath: A History of Greek Mathematics. Dover, New York 1981 (Erstausgabe: 1921).

Lehrbücher

  • Harold Scott MacDonald Coxeter: Introduction to Geometry. 2. Auflage. John Wiley & Sons, New York 1969, ISBN 978-0-471-50458-0.
  • Helmut Karzel, Kay Sörensen, Dirk Windelberg: Einführung in die Geometrie. Vandenhoeck & Ruprecht, Göttingen 1973, ISBN 3-525-03406-7.
  • Lars Kadison, Matthias T. Kromann: Projective Geometry and Modern Algebra. Birkhäuser, Boston/Basel/Berlin 1996, ISBN 3-7643-3900-4 (Inhaltsverzeichnis [PDF; 67 kB; abgerufen am 6. August 2013] Formuliert und beweist einfache Transitivitätseigenschaften der projektiven Gruppe, die zum Satz von Pappos äquivalent sind; Abhängigkeiten zwischen den 3 Axiomen: Fano, Desargues und Pappos).
  • Heinz Lüneburg: Die euklidische Ebene und ihre Verwandten. Birkhäuser, Basel/Boston/Berlin 1999, ISBN 3-7643-5685-5, III: Papossche Ebenen (Leseprobe books.google.de [abgerufen am 30. Juli 2013] Ausführliche Diskussion und Beweis des Satzes von Hessenberg, Erläuterungen, wie der Satz von Pappos die algebraische Struktur des Koordinatenkörpers bestimmt).
  • Hanfried Lenz: Vorlesungen über projektive Geometrie. Akad. Verlag, Leipzig 1965.
  • Rolf Lingenberg: Grundlagen der Geometrie I. Bibliographisches Institut, Mannheim 1969.
Bearbeiten

Einzelnachweise und Anmerkungen

Bearbeiten
  1. Strenggenommen müsste er heute als „Axiom“ bezeichnet werden, da er zwar in der reellen Geometrie stets gilt, aber in den heute als „affin“ bzw. „projektiv“ bezeichneten Geometrien nur genau dann, wenn die betrachtete Geometrie durch einen Körper koordinatisiert werden kann. Heinz Lüneburg: Die euklidische Ebene und ihre Verwandten. Birkhäuser, Basel/Boston/Berlin 1999, ISBN 3-7643-5685-5, III: Papossche Ebenen.
  2. Carl Immanuel Gerhardt: Die Sammlung des Pappus von Alexandrien, griechisch und deutsch in 2 Bänden. H. W. Schmidt, Halle / Eisleben (1871, 1875).
  3. W. Blaschke: Projektive Geometrie, Springer-Verlag, 2013, ISBN 3034869320, S. 190.
  4. Heinz Lüneburg: Die euklidische Ebene und ihre Verwandten. Birkhäuser, Basel/Boston/Berlin 1999, ISBN 3-7643-5685-5, III: Papossche Ebenen. Definition 1.1, häufig findet sich auch die Schreibweise pappussche Ebene.
  5. a b Kadison und Kromann (1996): 7.3: A Noncommutative Division Ring with Characteristic p.
  6. a b c Heinz Lüneburg: Die euklidische Ebene und ihre Verwandten. Birkhäuser, Basel/Boston/Berlin 1999, ISBN 3-7643-5685-5, III.1.Der Satz von Hessenberg.
  7. a b c Hanfried Lenz: Vorlesungen über projektive Geometrie. Akad. Verlag, Leipzig 1965.
  8. Lars Kadison, Matthias T. Kromann: Projective Geometry and Modern Algebra. Birkhäuser, Boston/Basel/Berlin 1996, ISBN 3-7643-3900-4. 6.3. Pappus’ theorem.