Schmidt-Teleskop

katadioptrisches Spiegelteleskop
(Weitergeleitet von Super-Schmidt-Optik)

Das Schmidt-Teleskop, auch Schmidt-Kamera oder Schmidt-Spiegel genannt, ist ein speziell für die Astrofotografie konstruiertes Spiegelteleskop, das durch seine Bauart ein besonders großes nutzbares Gesichtsfeld hat. Durch die Kombination aus Linsen und Spiegeln handelt es sich um ein katadioptrisches System.

Strahlengang eines Schmidt-Teleskops

Entwicklung

Bearbeiten
 
Die asphärische Schmidt-Platte

Das Schmidt-Teleskop geht auf eine Erfindung Bernhard Schmidts um 1930 zurück, der einen sphärischen Hauptspiegel mit einer dünnen, sehr speziell geformten Korrekturplatte (Schmidt-Platte) kombinierte.[1] Diese befindet sich im Krümmungsmittelpunkt des Hauptspiegels und beseitigt dessen sphärische Aberration. Die Koma und der Astigmatismus werden allein dadurch vermieden, dass die Öffnungsblende im Krümmungsmittelpunkt des Hauptspiegels steht. Um die Vignettierung (Abdunkelung der Ecken) zu reduzieren, wird der Hauptspiegel im Durchmesser größer ausgeführt als die Teleskopöffnung (siehe Abbildung). Wegen des großen erfassbaren Bildwinkels und höchster Bildgüte bis in die Ecken der Fotoplatten fand die Schmidt-Kamera in der Himmelsfotografie weite Verbreitung. Das Bildfeld der Schmidt-Kamera ist jedoch gewölbt, somit muss im Fokus ein sphärisch gewölbter Film eingesetzt werden, um die Bildfeldwölbung auszugleichen. Diese kann auch durch eine Plankonvexlinse direkt vor dem Brennpunkt („Bildfeldebnungslinse“) vollständig kompensiert werden, so dass plane Fotosensoren verwendbar werden.

Schmidt wies bereits in seiner Originalveröffentlichung darauf hin, dass es möglich ist, bei einem lichtschwächeren Öffnungsverhältnis auf die schwierig herzustellende Korrekturplatte ganz zu verzichten (so genanntes „linsenloses Schmidt-Teleskop“).

Der Teleskoptyp eignet sich nicht für die visuelle Beobachtung (im Gegensatz zum Schmidt-Cassegrain-Teleskop), sondern lediglich für die Fotografie, da der Fokus innerhalb des Teleskoptubus liegt und dort lediglich eine Kamera oder Fotoplatte montiert werden kann.

Das ganz anders konstruierte Schmidt-Cassegrain-Teleskop führt den Fokus rückseitig aus dem Tubus heraus und eignet sich dadurch auch für die visuelle Beobachtung.

Den ersten Schmidt-Spiegel der Sternwarte in Hamburg-Bergedorf stellte Bernhard Schmidt im Jahr 1930 (freie Öffnung 360 mm, Spiegeldurchmesser 440 mm, Brennweite 630 mm) fertig. Als an der Hamburger Sternwarte ein neuer Direktor gesucht wurde, forderte Walter Baade als Kandidat 1937 ein großes Schmidt-Teleskop mit 1 m Öffnung. Der Hamburger Senat bewilligte zwar die Gelder, auch nachdem Baade abgesagt hatte und Otto Heckmann zum Direktor ernannt worden war. Der Bau kam aber erst nach Ende des Krieges zustande. Der Große Hamburger Schmidt (freie Öffnung 800 mm, Spiegeldurchmesser 1200 mm, Brennweite 2400 mm) wurde 1954 in Betrieb genommen. Die ursprünglich geplanten Durchmusterungsarbeiten waren nun aber bereits vom Palomar-Schmidt übernommen worden. Der Große Hamburger Schmidt-Spiegel wurde 1975 nach Spanien zum Calar-Alto-Observatorium gebracht und blieb dort 25 Jahre in Betrieb.

 
Das Alfred-Jensch-Teleskop, die weltgrößte Schmidt-Kamera

Folgende Instrumente sind von besonderer Bedeutung für die astronomische Forschung, sortiert nach Größe:

Der Big Schmidt des Palomar-Observatoriums war das erste große Schmidt-Teleskop, das für eine komplette Himmelskartografie des Nordhimmels eingesetzt wurde. Das Kartenwerk des POSS (Palomar Observatory Sky Survey) war lange Zeit die Referenzquelle der beobachtenden Astronomie. Sie wurde in den 1980er Jahren wiederholt. In südlichen Breiten wurde der ESO-Schmidt zur Himmelsfotografie des Südsternhimmels eingesetzt.

Das UK-Schmidt-Teleskop, das Oschin-Schmidt-Teleskop und das ESO-Schmidt weisen als Besonderheit eine achromatische, aus zwei Glassorten gefertigte Korrektorplatte auf, die für ersteres von Grubb Parsons hergestellt wurde.[3][4]

Abwandlungen des Schmidt-Spiegels

Bearbeiten

Die herausragenden optischen Eigenschaften der Schmidtkamera motivierte die Untersuchung einer Reihe von Varianten, um das Bildfeld zu ebnen, den Aufbau zu vereinfachen, den Bildwinkel oder die Apertur zu vergrößern:

Schmidt-Väisälä-Kamera

Bearbeiten

Das Prinzip der Korrektorplatte ist auch 1924 – vor Schmidt – von Yrjö Väisälä entdeckt worden, wurde aber von ihm aufgrund der Bildfeldwölbung verworfen.[5] Väisälä entwickelte später zweilinsige Bildfeldebener für Schmidt-Spiegel, die nahe am Brennpunkt sitzen, und baute zwei Kameras, eine mit 120 mm Öffnung und eine mit 500 mm Öffnung, beide mit einem Öffnungsverhältnis von 1:2 und einem Bildwinkel von etwa 7°.[6][7] 1941 fertigte er eine weitere mit 31-cm-Öffnung für das Observatorium Kvistaberg.

Zwei derartige Kameras mit besonders großer Öffnung von 63 cm und einem Öffnungsverhältnis von nahezu 1:1 bei einem Bildwinkel von 10° wurden Anfang der 1960er Jahre von J. Hewitt spezifiziert und von Grubb Parsons gebaut. Diese, als Hewitt Camera bezeichneten Geräte wurden in England und Australien zur Satellitenbeobachtung eingesetzt.

Eine Linse zur Bildfeldebnung wurde später auch in dem Oschin-Schmidt-Teleskop und im Observatorio Astronómico Nacional de Llano del Hato eingesetzt, um die Teleskope mit ebenen CCD-Bildaufnehmern zu betreiben. Im Schmidt-Teleskop des Kiso-Observatoriums wird hingegen ein passend geformter CCD-Chip genutzt.[8]

Zweispiegel-Varianten

Bearbeiten
 
Schmidt-Cassegrain-Teleskop für Amateurastronome, die Schmidtplatte dient zugleich als Halter für den Sekundärspiegel, wodurch eine sonst zur Halterung erforderliche Spinne entfällt und die von dieser hervorgerufenen Beugungsspitzen vermieden werden.

Hauptartikel: Schmidt-Cassegrain-Teleskop und Schmidt-Newton-Teleskop

James G. Baker entwickelte eine Alternative zur Bildfeldebnung durch Linsen, indem er den Schmidt-Korrektor mit einer Cassegrain-Spiegelanordnung mit zumindest einer leicht asphärischen Spiegeloberfläche kombinierte.[9] Dabei ergibt sich eine – verglichen mit der ursprünglichen Schmidt-Kamera – zugänglichere Bildebene nahe dem Hauptspiegel und eine kürzere Bauform durch einen verringerten Abstand des Korrektors zum Hauptspiegel. Weitere Varianten sind Ausführungen, bei denen beide Spiegel sphärisch sind, Bildfehler jedoch nicht vollständig beseitigt werden; diese können dann durch weitere fokusnahe Korrektoren beseitigt werden. Nach diesem Prinzip sind zwei große wissenschaftliche Instrumente mit etwas mehr als 80 cm Öffnung gebaut worden sowie eine Reihe von Teleskopen für die Amateurastronomie bei etwa 55 cm Apertur. Ebenfalls für den Amateurbereich wird die Kombination eines Newton-Teleskopes mit einer davor sitzenden Schmidt-Korrektorplatte angeboten.

Eine weitere Variante bildet die monozentrische Ausführung, bei der das Krümmungszentrum beider Spiegel aufeinanderliegt. Aufgrund der so gebildeten Symmetrie ergibt sich ein großer Bildwinkel.

Super-Schmidt-Optik

Bearbeiten
 
Baker-Nunn-Kamera, sie ist aufgrund des höheren Öffnungsverhältnisses von 1:1 kürzer als eine Schmidt-Kamera.

Das Prinzip der von Schmidt entdeckten Anordnung lässt sich weiter verbessern, indem das Konzept von einem Korrektor im Zentrum eines sphärischen Hauptspiegel durch einen mehrgliedrigen Aufbau des Korrektors erweitert wird. Hierfür hat sich insbesondere die Aufteilung der Korrektur auf Schmidt-Platte und Meniskuslinse eines Maksutov-Teleskops als sehr leistungsfähig erwiesen, da einige Aberrationen von Schmidt-Platte und Meniskus sich aufheben.[10][11][12] Diese Optiken weisen Bildwinkel von 60° bei Lichtstärken von rund 1:1 auf und wurden um 1960 überwiegend als Satellitenkameras eingesetzt.

Beispiele für Super-Schmidt-Optiken sind:

  • Meniscus-Super-Schmidt-Camera. Diese in England entwickelte Kamera verwendet zwei Menisken, die eine achromatische Schmidt-Platte umgeben; sie weist eine Apertur von 30 cm und ein nominelles Öffnungsverhältnis von 1:0,63 auf.[13][14]
  • Die parallel dazu entwickelte Baker super-Schmidt, die von James G. Baker konzipierte und von Perkin Elmer um 1950 gebaute Kamera zur Meteor-Beobachtung, hatte einen ähnlichen Aufbau und ähnliche Eigenschaften.[14][15]
  • Die sowjetische FAS-Camera, bestehend aus Korrektorplatte und Meniskuslinse.[16]
  • VAU-Camera, eine in der Sowjetunion konstruierte Kamera mit einem Objektivdurchmesser von 650 mm. Sie wurde 1969 in dem Observatorium von Swenigorod installiert. Sie basiert auf einem von Maksutow und Sosnina 1953 entwickelten Astrodar-Objektiv, bei dem sich hinter der Apertur eine Meniskuslinse befindet.[17][18][19]
  • Eine in Polen konstruierte und im Observatorium Posen installierte Kamera Poznan-2, die einen Korrektor aus fünf Linsen hat.[16]
  • Die Baker-Nunn-Satellite-Tracking Camera mit einer Apertur von 50 cm und einem Öffnungsverhältnis von 1:1. Die Anordnung des dreilinsigen Korrektors und des sphärischen Spiegels ähnelt einem Houghton-Teleskop, die Korrektorlinsen sind aber wie in einer Schmidt-Kamera dünner und asphärisch ausgeführt.

Eine Weiterentwicklung, die schärfere Bilder bei einem Bildwinkel von 30° liefert, eine Öffnung von 80 cm sowie ein Öffnungsverhältnis von 1:1,9 aufweist und nur sphärische Linsen aus einer Glassorte verwendet, wurde im Jahr 2016 publiziert.[20]

Korrektorspiegel

Bearbeiten
 
LAMOST

Hauptartikel: Large Sky Area Multi-Object Fibre Spectroscopic Telescope

Die Lichtbrechung der aus Glas ausgeführten Schmidt-Platte verursacht eine wellenlängenabhängige Aufspaltung des Lichts. Dieser chromatische Abbildungsfehler kann durch einen asphärisch geformten, leicht schräg stehenden Spiegel vermieden werden, der die Schmidtplatte ersetzt.[21][22] Für Forschungszwecke wurde erstmals 2007 ein Schmidt-Teleskop mit Korrektorspiegel durch das chinesische LAMOST realisiert. Da der Korrektorspiegel zudem flächig gegen Verformung gestützt werden kann, konnte eine freie Öffnung von 4 m realisiert und ein chromasiefreies Bildfeld von 5° erzielt werden.

Literatur

Bearbeiten
  • S. Marx, W. Pfau: Himmelsfotografie mit Schmidt-Teleskopen. Urania-Verlag, Leipzig/ Jena/ Berlin 1990, ISBN 3-332-00214-7.
  • J. Schramm: Sterne über Hamburg – Die Geschichte der Astronomie in Hamburg. 2., überarbeitete und erweiterte Auflage. Kultur- & Geschichtskontor, Hamburg 2010, ISBN 978-3-9811271-8-8.
Bearbeiten
Commons: Schmidtkameras – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

Bearbeiten
  1. Bernhard Schmidt: Ein lichtstarkes komafreies Spiegelsystem. bibcode:1938MiHam...7...15S
  2. Atmospheric Extinction Coefficients and Night Sky Brightness At the Xuyi Observational Station, arxiv:1211.4672
  3. Charles Gorrie Wynne: The Optics of the Achromatized UK Schmidt Telescope Quarterly In: Journal of the Royal Astronomical Society. Vol. 22, 1981, S. 146, bibcode:1981QJRAS..22..146W
  4. R. V. Willstrop: Wide-field conversions for reflecting telescopes. bibcode:1987MNRAS.229..143W
  5. E. Öpik: Yrjö Väisälä. In: Irish Astron. Journ. Vol. 11, S. 159, bibcode:1973IrAJ...11R.159O
  6. Yrjö Väisälä: Anastigmatisches Spiegelteleskop der Sternwarte der Universität Turku. In: Astr. Nachr. Band 254, 1935, S. 361. bibcode:1935AN....254..361V
  7. Yrjö Väisälä: Über Spiegelteleskope mit großem Gesichtsfeld. In: Astr. Nach. Band 259, 1936, S. 197. bibcode:1936AN....259..197V
  8. Nobunan Itoh, Takao Soyano, Ken'rchi Tarusawa, Tsutomu Aoki, Sigeomi Yoshida, Takashi Hasegawa, Yasushi Yadomaru, Yoshikazu Nakada, Satoshi Miyazaki: A Very Wide-Field CCD Camera for Kiso Schmidt Telescope (Memento vom 31. Oktober 2008 im Internet Archive) (PDF-Datei; 739 kB). In: Publ. Natl. Astron. Obs. Japan. Vol. 6, 2001, S. 41–48.
  9. J. G. Baker: A family of Flat Field Cameras, Equivalent in Performance to the Schmidt Camera. In: Proceedings, American Philosophical Society. vol. 82, 1940, S. 339. (books.google.de)
  10. Patent US2458132A: Schmidt image former with spherical aberration corrector. Angemeldet am 19. Juni 1945, veröffentlicht am 4. Januar 1949, Anmelder: Perkin Elmer Corp, Erfinder: James G. Baker.
  11. Patent US2448699A: Schmidt type image former with negative meniscus lens spherical aberration corrector. Angemeldet am 18. Dezember 1945, veröffentlicht am 7. September 1948, Anmelder: N. V. Optische Industrie "De Oude Delft", Erfinder: Albert Bouwers.
  12. D. G. Hawkins, E. H. Linfoot: An improved type of Schmidt camera. In: Monthly Notices of the Royal Astronomical Society. Vol. 105, 1945, S. 334, bibcode:1945MNRAS.105..334H
  13. The meniscus Super-Schmidt meteor camera. (engl.)
  14. a b J. Davis: The Design and Performance of three Meniscus Schmidt Meteor Cameras. In: Quarterly Journal of the Royal Astronomical Society. Vol. 4, 1963, S. 74, bibcode:1963QJRAS...4...74D
  15. Fred L. Whipple: The Baker super-Schmidt meteor cameras. bibcode:1951AJ.....56..144W
  16. a b A. G. Massevitch, A. M. Losinsky: Photographic Tracking of Artifical Satellites. In: Space Science Review. 1970, bibcode:1970SSRv...11..308M
  17. Nail Bakhtigaraev, Alexandr Sergeev: New instruments in Zvenigorod and Terskol observatories.
  18. A. G. Masevich, A. M. Lozinskiy: New Soviet Cameras For Photographic Observations Of Artificial Heavenly Bodies. (Memento des Originals vom 8. April 2013 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.dtic.mil (Novyye Sovetskiye kamery dlya fotonablyudeniy iskusstvennykh nebesnykh tel, Vestnik Akadeinii Nauk SSSR, Vol. 57, No. 2, 1970, S. 38–44, Übersetzt von Walter L. Burton, 1972)
  19. V.Yu.Terebizh "New designs of survey telescopes", Astron. Nachr. / AN 332, No. 7, 714–742, 2011 DOI:10.1002/asna.201190015
  20. terebizh.ru
  21. Lewis C. Epstein: An All-Reflection Schmidt Telescope for Space Research. bibcode:1967S&T....33..204E
  22. Dietrich Korsch: Reflective Schmidt corrector. bibcode:1974ApOpt..13.2005K