Trans-activating crRNA (tracrRNA) ist eine RNA, die in Bakterien als Bestandteil des antiviralen adaptiven Immunsystems CRISPR vorkommt und zur CRISPR/Cas-Methode, CRISPRi und CRISPRa verwendet wird.
Eigenschaften
BearbeitenDie tracrRNA wird trans codiert. Sie wurde erstmals 2011 bei Streptococcus pyogenes beschrieben.[1] Die tracrRNA bindet per Basenpaarung an die crRNA und ist Bestandteil des Ribonukleoproteinkomplexes der meisten Cas-Proteine (beispielsweise Cas9, Cas12b). Der RNA-Doppelstrang aus crRNA und tracrRNA wird über einen Schnitt durch die RNase III in die aktive Form überführt und dient dem CRISPR/Cas als Adapter zur Bindung der zu schneidenden Ziel-DNA.[2][3][4] Zur Vereinfachung der Verwendung in einer CRISPR-basierten Methode wie die CRISPR/Cas-Methode, CRISPRi und CRISPRa wird meistens anstatt der beiden RNA (tracrRNA und crRNA) eine sgRNA verwendet.
tracrRNA-Sequenzen
BearbeitenTyp | Sequenz |
---|---|
Streptococcus pyogenes tracrRNA (Cas9) | 5'-GUUGGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUUU-3' [5]
|
Streptococcus pyogenes tracrDNA (Cas9) | 5'-GTTGGAACCATTCAAAACAGCATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTT-3' [6]
|
Staphylococcus aureus tracrRNA (Cas9) | 5'-AUUGUACUUAUACCUAAAAUUACAGAAUCUACUAAAACAAGGCAAAAUGCCGUGUUUAUCUCGUCAACUUGUUGGCGAGAUUUUU-3' [5]
|
Staphylococcus aureus tracrDNA (Cas9) | 5'-ATTGTACTTATACCTAAAATTACAGAATCTACTAAAACAAGGCAAAATGCCGTGTTTATCTCGTCAACTTGTTGGCGAGATTTTT-3'
|
Streptococcus thermophilus tracrRNA | 5'-CUUACACAGUUACUUAAAUCUUGCAGAAGCUACAAAGAUAAGGCUUCAUGCCGAAAUCAACACCCUGUCAUUUUAUGGCAGGGUGUUUU-3' [5]
|
Streptococcus thermophilus tracrDNA | 5'-CTTACACAGTTACTTAAATCTTGCAGAAGCTACAAAGATAAGGCTTCATGCCGAAATCAACACCCTGTCATTTTATGGCAGGGTGTTTT-3'
|
Corynebacterium diphtheriae tracrRNA | 5'-AGUCACUAACUUAAUUAAAUAGAACUGAACCUCAGUAAGCAUUGGCUCGUUUCCAAUGUUGAUUGCUCCGCCGGUGCUCCUUAUUUUUAAGGGCGCCGGCUUUCUU-3' [5]
|
Corynebacterium diphtheriae tracrDNA | 5'-AGTCACTAACTTAATTAAATAGAACTGAACCTCAGTAAGCATTGGCTCGTTTCCAATGTTGATTGCTCCGCCGGTGCTCCTTATTTTTAAGGGCGCCGGCTTTCTT-3'
|
Alicyclobacillus acidoterrestris tracrRNA (Cas12b) | 5'-GUCUAGAGGACAGAAUUUUUCAACGGGUGUGCCAAUGGCCACUUUCCAGGUGGCAAAGCCCGUUGAGCUUCUCAAAAAA-3' [7]
|
Alicyclobacillus acidoterrestris tracrDNA (Cas12b) | 5'-GTCTAGAGGACAGAATTTTTCAACGGGTGTGCCAATGGCCACTTTCCAGGTGGCAAAGCCCGTTGAGCTTCTCAAAAAA-3'
|
Einzelnachweise
Bearbeiten- ↑ E. Deltcheva, K. Chylinski, C. M. Sharma, K. Gonzales, Y. Chao, Z. A. Pirzada, M. R. Eckert, J. Vogel, E. Charpentier: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. In: Nature. Band 471, Nummer 7340, März 2011, S. 602–607, doi:10.1038/nature09886, PMID 21455174, PMC 3070239 (freier Volltext).
- ↑ M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, E. Charpentier: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. In: Science. Band 337, Nummer 6096, August 2012, S. 816–821, doi:10.1126/science.1225829, PMID 22745249, PMC 6286148 (freier Volltext).
- ↑ S. Shen, T. J. Loh, H. Shen, X. Zheng, H. Shen: CRISPR as a strong gene editing tool. In: BMB reports. Band 50, Nummer 1, Januar 2017, S. 20–24, PMID 27616359, PMC 5319660 (freier Volltext).
- ↑ F. Jiang, J. A. Doudna: CRISPR-Cas9 Structures and Mechanisms. In: Annual review of biophysics. Band 46, 05 2017, S. 505–529, doi:10.1146/annurev-biophys-062215-010822, PMID 28375731.
- ↑ a b c d F. A. Ran, L. Cong, W. X. Yan, D. A. Scott, J. S. Gootenberg, A. J. Kriz, B. Zetsche, O. Shalem, X. Wu, K. S. Makarova, E. V. Koonin, P. A. Sharp, F. Zhang: In vivo genome editing using Staphylococcus aureus Cas9. In: Nature. Band 520, Nummer 7546, April 2015, S. 186–191, doi:10.1038/nature14299, PMID 25830891, PMC 4393360 (freier Volltext).
- ↑ Patent WO2017222834A1: Compositions and methods for mitochondrial genome editing. Angemeldet am 9. Juni 2017, veröffentlicht am 28. Dezember 2017, Anmelder: Hope City, Univ. California, Erfinder: John Burnett, Anh Pham.
- ↑ S. Shmakov, O. O. Abudayyeh, K. S. Makarova, Y. I. Wolf, J. S. Gootenberg, E. Semenova, L. Minakhin, J. Joung, S. Konermann, K. Severinov, F. Zhang, E. V. Koonin: Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. In: Molecular cell. Band 60, Nummer 3, November 2015, S. 385–397, doi:10.1016/j.molcel.2015.10.008, PMID 26593719, PMC 4660269 (freier Volltext).