Algorithmus von Ford und Fulkerson

Handlungsvorschriften zur Lösung eines Problems in der Informatik

Der Algorithmus von Ford und Fulkerson ist ein Algorithmus aus dem mathematischen Teilgebiet der Graphentheorie zur Bestimmung eines maximalen Flusses in einem Flussnetzwerk mit rationalen Kapazitäten. Er wurde nach seinen Erfindern L.R. Ford Jr. und D.R. Fulkerson benannt.[1] Die Anzahl der benötigten Operationen hängt vom Wert des maximalen Flusses ab und ist im Allgemeinen nicht polynomiell beschränkt. Weiterentwicklungen führten zum Algorithmus von Edmonds und Karp und dem Algorithmus von Dinic.

Wirkungsprinzip

Bearbeiten

Der Algorithmus beruht auf der Idee, einen Weg von der Quelle zur Senke zu finden, entlang dessen der Fluss weiter vergrößert werden kann, ohne die Kapazitätsbeschränkungen der Kanten zu verletzen. Ein solcher Weg wird auch als augmentierender Pfad bezeichnet. Durch Wiederholung können die Flüsse entlang mehrerer solcher Wege zu einem noch größeren Gesamt-Fluss zusammengefasst werden. Wird stets der kürzeste Weg gewählt, ergibt sich der Edmonds-Karp-Algorithmus.

Damit auf diese Weise tatsächlich stets der maximale Fluss gefunden werden kann, muss auch zugelassen werden, dass der Weg Kanten des Netzwerkes in umgekehrter Richtung folgt und für diese Kanten den Fluss wieder reduziert (sog. Rückkanten, s. u.). In der Analogie einer realen Flüssigkeitsbewegung bspw. durch ein Rohrleitungs-Netzwerk entspricht das der Idee, dass man anstatt einen Teil der durch eine Leitung fließenden Flüssigkeit wieder zurückzuschicken auch einfach von vornherein eine entsprechende Menge weniger durch diese Leitung schicken kann.

Formale Beschreibung

Bearbeiten

Gegeben sei ein Netzwerk  , bestehend aus einem endlichen, gerichteten Graphen   mit einer Quelle  , einer Senke   und einer Kapazitätsfunktion  , die jeder Kante   eine nichtnegative reelle Zahl   als Kapazität zuordnet.

Der Algorithmus verändert in jedem Durchlauf einen s-t-Fluss im Netzwerk  , also eine Abbildung   mit den Eigenschaften

  • Kapazitätsbeschränkung: Für jede Kante   ist der Fluss durch   beschränkt.
  • Flusserhaltung: Für jeden Knoten   gilt:
     .

Hierbei bezeichnet   die Menge der aus   hinausführenden Kanten und   die Menge der in   hineinführenden Kanten. Der in einen Knoten eingehende Fluss muss also gleich dem ausgehenden Fluss sein.

Der Algorithmus sucht in jedem Schritt einen Weg von   nach   im Residualgraphen. Der Residualgraph   teilt sich mit   dieselbe Knotenmenge und enthält die Kanten von  , die von   nicht ausgelastet sind, ergänzt um sogenannte Rückkanten: Für jede Kante   mit   enthält   jeweils zusätzlich eine Rückkante  . Formal gilt also:   Dazu werden Residualkapazitäten   definiert, die jeder Kante   zuordnen, um wie viel der Fluss   auf   noch erhöht werden kann, und jeder Rückkante   zuordnen, um wie viel der Fluss auf der zugehörigen Hinkante   verringert werden kann. Also formal:

 

Zur Initialisierung kann ein beliebiger Fluss verwendet werden (auch der Nullfluss, der jeder Kante   den Wert 0 zuordnet). Der Algorithmus beschreibt sich wie folgt:

  1. (Initialisierung mit Nullfluss:) Setze   für jede Kante  .
  2. Solange es im Residualgraphen   einen Weg von   nach   gibt, bestimme einen solchen Weg   und tue:
    Bestimme  .
    Für alle   setze:  .
    Für alle   setze für die zugehörige Hinkante  :  .

Sind alle Kapazitäten rational, berechnet der Algorithmus nach endlich vielen Schritten einen maximalen s-t-Fluss.

Beispiel

Bearbeiten
Beschreibung Graph  
(mit Kapazitäten  )
Fluss   Residualgraph  
(mit Residual-Kapazitäten  )
Wir betrachten das s-t-Flussnetzwerk  , bestehend aus dem Graphen   mit vier Knoten   und fünf Kanten  , der Quelle  , der Senke   und der rechts angegebenen Kapazitätsfunktion  .

Wir starten mit dem leeren Fluss  , der jeder Kante den Wert   zuordnet. Damit entspricht der Residualgraph   zunächst genau dem Netz   und die zugehörigen Residual-Kapazitäten   genau den Kapazitäten  .

 
   
su 4
ut 1
sv 2
vt 6
uv 3
 
   
su 0
ut 0
sv 0
vt 0
uv 0
 
     
su 4
ut 1
sv 2
vt 6
uv 3
Beschreibung Augmentierender Pfad  
(mit Residual-Kapazitäten  )
Fluss   Residualgraph  
(mit Residual-Kapazitäten  )
Nehmen wir an, der Algorithmus wählt als erstes den Pfad  , d. h.   (blau). Entlang dieses Pfades können wir wegen   den Fluss höchstens um   erhöhen (die mittlere Kante von oben nach unten). Daraus ergibt sich ein neuer Fluss (wir bezeichnen ihn wieder mit  ) mit  .

Die Kante   hat eine Kapazität von  , wir nutzen davon im Moment jedoch nur  . Im Residualgraphen bleibt die Kante daher mit einer Residualkapazität von   erhalten. Anders ist das beispielsweise mit der Kante  , bei der keine Residualkapazität   übrig bleibt. Sie „verschwindet“ deshalb aus dem Residualgraphen   (grau gestrichelt dargestellt). Für die Kante   ergibt sich eine Residualkapazität von  .

Weiterhin haben wir jetzt drei Kanten   mit einem Fluss größer als Null. Diesen Fluss können wir theoretisch auch wieder „zurückschicken“, weshalb wir drei neue „Rückwärtskanten“   einführen, deren Residualkapazität genau dem aktuellen Fluss zwischen den beiden Knoten entspricht (rot).

   
   
su 3
ut 0
sv 0
vt 3
uv 3
 
     
su 1 3
ut 1
sv 2
vt 3 3
uv 3
Gehen wir davon aus, der Algorithmus wählt im nächsten Schritt den Pfad  . Die maximale Flussvergrößerung entlang dieses Pfades ergibt sich aus der Residualkapazität   der Kante  . Dabei nutzen wir erstmals eine Rückwärtskante, die Kante  . Während sich der Fluss f entlang der Kanten sv und ut um 1 erhöht, verringert sich der Fluss hingegen entlang der Kante uv um 1 von 3 auf 2. Damit ist die Kapazität   dieser Kante nicht länger ausgenutzt, und die Kante uv kehrt in den Residualgraphen   zurück, dieses Mal mit der Residualkapazität  . Dafür „verschwindet“ dieses Mal ut. Die Residualkapazität von sv verringert sich um 1 auf 1.

Man beachte: alle Rückwärtskanten im Residualgraph haben wieder dieselbe Residualkapazität, die dem Wert des Flusses zwischen ihren beiden Knoten entspricht.

   
   
su 3
ut 1
sv 1
vt 3
uv 2
 
     
su 1 3
ut 1
sv 1 1
vt 3 3
uv 1 2
Als nächstes finde der Algorithmus z. B. erneut  . Dieses Mal lässt sich der Fluss entlang dieses Pfades lediglich noch um 1 erhöhen, gerade den Betrag, den wir im vorigen Schritt entlang der Kante uv wieder zurückgeschickt haben. Man merkt hier schon, dass der Algorithmus unter Umständen viel „hin und her“ schiebt, mehr dazu unter Laufzeit.    
   
su 4
ut 1
sv 1
vt 4
uv 3
 
     
su 4
ut 1
sv 1 1
vt 2 4
uv 3
Im letzten Schritt kann nur noch der Pfad   gefunden werden. Dieser erhöht den Fluss nochmals um 1, für einen Gesamtwert des Flusses von  . Das kann man auch gut daran erkennen, dass die von der Quelle s ausgehenden Kanten zusammen einen Fluss von   aufweisen, ebenso wie die in der Senke t endenden Kanten. Dieser Fluss ist tatsächlich maximal, was sich leicht daran erkennen lässt, dass alle Kanten, welche von der Quelle ausgehen, voll ausgelastet sind (diese beiden Kanten sind ein Flaschenhals, d. h. die Schnittkanten eines minimalen Schnitts).

Der Algorithmus terminiert anschließend, da im sich ergebenden Residualgraphen kein Weg von s nach t mehr gefunden werden kann. Würde man den Algorithmus insofern ergänzen, dass er untersucht, welche Knoten von s noch erreichbar sind, ergäbe sich automatisch der o.a. minimale Schnitt, in diesem Fall enthält er lediglich den Knoten s, von dem man keinen anderen mehr erreichen kann (siehe Max-Flow-Min-Cut-Theorem).

   
   
su 4
ut 1
sv 2
vt 5
uv 3
 
     
su 4
ut 1
sv 2
vt 1 5
uv 3

Korrektheit

Bearbeiten

Ford und Fulkerson konnten beweisen, dass ein s-t-Fluss   in einem Netzwerk   genau dann maximal ist, wenn es keinen augmentierenden Pfad gibt, d. h., wenn das Restnetzwerk   keinen Pfad von   nach   besitzt. Daher gilt:

Falls der Algorithmus von Ford und Fulkerson zum Stehen kommt, ist ein maximaler s-t-Fluss gefunden.

Dabei muss der maximale s-t-Fluss nicht eindeutig bestimmt sein.

Bei der Durchführung des Algorithmus vergrößert sich der betrachtete Fluss mit jedem Schritt. Daraus folgt eine wichtige Tatsache für ganzzahlige Netzwerke:

Sind alle Kapazitäten des gegebenen Netzwerks nichtnegative ganze Zahlen, so kommt der Algorithmus von Ford und Fulkerson nach endlich vielen Schritten zum Stehen und liefert einen maximalen s-t-Fluss, der außerdem ganzzahlig ist.

Sind alle Kapazitäten rationale Zahlen, so erhält man durch Multiplikation mit dem Hauptnenner ein ganzzahliges Netzwerk, und kann so die folgende Aussage beweisen:

Sind alle Kapazitäten des gegebenen Netzwerks nichtnegative rationale Zahlen, so kommt der Algorithmus von Ford und Fulkerson nach endlich vielen Schritten zum Stehen und liefert einen maximalen s-t-Fluss, der außerdem nur rationale Werte hat.

Falls irrationale Zahlen als Kapazitäten vorkommen, gilt das nicht mehr: Ford und Fulkerson konstruierten ein Beispiel eines Netzwerkes mit 10 Knoten und 48 Kanten, bei dem ihr Algorithmus bei geeigneter Auswahl der augmentierenden Pfade nicht zum Stehen kommt und auch nicht gegen einen maximalen Fluss konvergiert[2]. Im Jahr 1995 fand Uri Zwick ein Beispiel mit 6 Knoten und 8 Kanten und einem derartigen Verhalten[3].

Laufzeit

Bearbeiten

Der Algorithmus von Ford und Fulkerson findet einen maximalen Fluss (sofern er terminiert) in   Rechenschritten (siehe Landau-Notation), wobei   die Anzahl der Knoten des Netzwerkes,   die Anzahl der Kanten des Netzwerkes,   den Wert des maximalen Flusses und   den Hauptnenner der Kapazitäten bezeichnen. Sind die Kantengewichte irrational, so kann es auftreten, dass der Algorithmus nicht terminiert[4].

 
Beispiel für einen ungünstigen Graphen

Einerseits benötigt jeder Schleifendurchlauf des Algorithmus lediglich   Operationen, aber andererseits hängt die benötigte Anzahl der Schleifendurchläufe von der Größe der Kapazitäten ab. Es ist möglich, die flussvergrößernden Pfade sehr ungünstig zu wählen. Das kann man sich am Beispiel links verdeutlichen: der Algorithmus kann in diesem Beispiel in jedem Schritt einen Weg über die mittlere Kante (ggf. als Rückwärtskante) wählen und den Gesamt-Fluss dadurch nur um 1 erhöhen.

Wählt man in jedem Schritt immer einen kürzesten augmentierenden Pfad zur Vergrößerung des Flusses, so erhält man den Algorithmus von Edmonds und Karp, der stets in Laufzeit   einen maximalen s-t-Fluss konstruiert. Eine weitere Verbesserung mit Hilfe zusätzlicher Techniken bringt der Algorithmus von Dinic mit einer (worst-case)-Komplexität von  .

Pseudocode

Bearbeiten
Eingabe: Ursprungsgraph
Ausgabe: Graph mit maximalem Fluss

Berechne Restgraph aus Ursprungsgraph
Solange es einen Erweiterungspfad im Restgraph gibt:
	Restkapazität = Minimum( Restkapazität der Kante für jede Kante des Erweiterungspfades )
	Für jede Kante des Erweiterungspfades:
		Falls Kante in Ursprungsgraph:
			Fluss( Kante ) = Fluss( Kante ) + Restkapazität
		Sonst:
			Fluss( umgekehrte Kante ) = Fluss( umgekehrte Kante ) - Restkapazität

Literatur

Bearbeiten
Bearbeiten
Commons: Algorithmus von Ford und Fulkerson – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

Bearbeiten
  1. L.R. Ford Jr., D.R Fulkerson: Maximal flow through a network. In: Canad. J. Math. 8. Jahrgang, 1956, S. 399–404, doi:10.4153/CJM-1956-045-5 (math.ca [PDF]).
  2. Lester Randolph Ford junior, Delbert Ray Fulkerson: Flows in Networks, Princeton University Press 1962
  3. Uri Zwick: The smallest networks on which the Ford-Fulkerson maximum flow procedure may fail to terminate, Theoretical Computer Science 148, 165–170 (1995).
  4. KIT - Fakultät für Informatilk: An Even Worse Example for Ford Fulkerson. In: kit.edu. KIT, 30. Januar 2008, abgerufen am 25. Januar 2022 (englisch).