Mandelbrot-Menge

fraktal erscheinende Menge, die eine bedeutende Rolle in der Chaosforschung spielt
(Weitergeleitet von Apfelmännchen)

Die Mandelbrot-Menge, benannt nach Benoît Mandelbrot, ist die Menge der komplexen Zahlen , für welche die durch die iterative Vorschrift mit dem Anfangswert definierte Folge endlich bleibt, d. h. beschränkt ist.

Mandelbrot-Menge (schwarz) mit farbig kodierter Umgebung (rot→blau→grün→…). Jedes Pixel entspricht einer komplexen Zahl . Farbig kodiert ist die Anzahl an notwendigen Iterationen , sodass wird. Sie steigt von den Ecken von 5 (dunkelrot) nach innen von Farbstreifen zu Farbstreifen um je 1.

Interpretiert man die Mandelbrot-Menge (eine Teilmenge der Gaußschen Zahlenebenen) als geometrische Figur, so ergibt sie ein Fraktal, das im allgemeinen Sprachgebrauch oft Apfelmännchen genannt wird. Bilder berechnet man, indem man jedem Pixel eines Bildes eine komplexe Zahl zuordnet [A 1] und beginnend mit untersucht, ob und wann die Iterationen anfangen, zu „explodieren“. Bleiben die Werte klein, wird das Pixel häufig schwarz gefärbt, kommt es zu einer „Explosion“ der Zahlenwerte, wird die Anzahl der dafür notwendigen Iterationen als Farbe kodiert.[A 2]

Die ersten mit einem Computer generierten Darstellungen[A 3] wurden 1978 von Robert W. Brooks und Peter Matelski vorgestellt.[1] 1980 veröffentlichte Benoît Mandelbrot eine Arbeit über das Thema.[2] Später wurde sie von Adrien Douady und John Hamal Hubbard in einer Reihe grundlegender mathematischer Arbeiten systematisch untersucht.[3] Die mathematischen Grundlagen dafür wurden bereits 1905 von dem französischen Mathematiker Pierre Fatou erarbeitet.

Definition

Bearbeiten
 
Die Mandelbrot-Menge (schwarz) in der komplexen Ebene

Definition über Rekursion

Bearbeiten

Die Mandelbrot-Menge   ist die Menge aller komplexen Zahlen  , für welche die rekursiv definierte Folge komplexer Zahlen   mit dem Anfangsglied

 

und dem Bildungsgesetz

 

beschränkt bleibt. Das heißt, eine komplexe Zahl   ist Element der Mandelbrot-Menge  , wenn die Beträge der mit diesem   berechneten   nicht über jede Grenze wachsen, unabhängig davon, wie groß   wird. Dies lässt sich wie folgt schreiben:

 

Es lässt sich zeigen, dass der Betrag der   über jede Grenze wächst, sobald ein   mit   auftritt, somit ist diese Definition gleichbedeutend mit:[4]

 

Definition über komplexe quadratische Polynome

Bearbeiten

Die Mandelbrot-Menge lässt sich auch über komplexe quadratische Polynome beschreiben:

 

mit einem komplexen Parameter  . Für jedes   wird die Folge

 

iterativ berechnet, wobei   die  -fache Hintereinanderausführung der Iteration bedeutet, also

 
 

In Abhängigkeit vom Wert des Parameters   wächst diese Folge dann entweder unbeschränkt, sodass also   kein Element der Mandelbrot-Menge ist, oder sie verbleibt innerhalb eines Bereichs um den Ursprung der Zahlenebene, und   ist Element der Mandelbrot-Menge.

Die Mandelbrot-Menge ist eine Untermenge der komplexen Zahlen mit der Definition:

 

oder gleichbedeutend:

 

Zur Erläuterung werden einige Eigenschaften und Beispiele angeführt:

  • Aufgrund der zuvor beschriebenen Feststellung kann   gesetzt werden. Dabei gibt der Wert   den Radius um den Ursprung an, innerhalb dessen ein Element von   liegen kann. Außerhalb dieses Kreises sind keine Elemente von   zu finden.
  • Wegen der Betragsfunktion ist   symmetrisch zur reellen Achse.
  • Um die Menge   grafisch darzustellen, müssen die Werte des Parameters   alle einzeln bis zu einer selbstbestimmten Anzahl von Iterationen berechnet werden.
  • Für   lautet die Folge   und ist beschränkt. Daher ist   Element von  .
  • Für   lautet die Folge   und ist divergent. Daher ist   kein Element von  .

Definition über Julia-Mengen

Bearbeiten

Die Mandelbrot-Menge   wurde von Benoît Mandelbrot ursprünglich zur Klassifizierung von Julia-Mengen eingeführt, die bereits Anfang des 20. Jahrhunderts von den französischen Mathematikern Gaston Maurice Julia und Pierre Fatou untersucht wurden. Die Julia-Menge   zu einer bestimmten komplexen Zahl   ist definiert als der Rand der Menge aller Anfangswerte  , für die die obige Zahlenfolge beschränkt bleibt. Es kann bewiesen werden, dass die Mandelbrot-Menge   genau die Menge der Werte   ist, für die die zugehörige Julia-Menge   zusammenhängend ist.[5]

Dieses Prinzip wird in vielen Resultaten über das Verhalten der Mandelbrot-Menge   vertieft. So zeigt Shishikura, dass der Rand der Mandelbrot-Menge   ebenso wie die zugehörige Julia-Menge   die Hausdorff-Dimension 2 hat.[6] Ein unveröffentlichtes Manuskript von Jean-Christophe Yoccoz diente John Hamal Hubbard als Grundlage für seine Ergebnisse über lokal zusammenhängende Julia-Mengen   und lokal zusammenhängende Mandelbrot-Mengen  .[7]

 
oben: Feigenbaumdiagramm[A 4], Mitte/unten: Mandelbrot-Menge. Die vertikalen roten Linien zeigen die Übereinstimmung der charakteristischen Punkte der Mandelbrot-Menge für reelle  -Werte und des Feigenbaumdiagramms.

Bezug zur Chaostheorie

Bearbeiten

Das Bildungsgesetz, das der Folge zugrunde liegt, ist die einfachste nichtlineare Gleichung, anhand deren sich der Übergang von Ordnung zu Chaos durch Variation eines Parameters provozieren lässt. Dazu genügt es, reelle Zahlenfolgen zu betrachten.

Für Werte  , das heißt innerhalb der Kardioide, konvergiert die Folge. Auf der „Antenne“, die bis   reicht, verhält sich die Folge chaotisch. Der Übergang zu chaotischem Verhalten erfolgt nun über ein Zwischenstadium mit periodischen Grenzzyklen. Dabei nimmt die Periode zum chaotischen Bereich hin stufenweise um den Faktor zwei zu, ein Phänomen, das als Periodenverdopplung und Bifurkation bezeichnet wird. Jeder  -Bereich zu einer bestimmten Periode entspricht dabei einer der kreisförmigen „Knospen“ auf der  -Achse.

Die Periodenverdopplung beginnt mit dem „Kopf“ und setzt sich in der Folge der „Knospen“ zur „Antenne“ hin fort. Das Verhältnis der Längen aufeinander folgender Parameterintervalle und damit das der Knospendurchmesser zu unterschiedlicher Periode strebt dabei gegen die Feigenbaum-Konstante  , eine fundamentale Konstante der Chaostheorie. Dieses Verhalten ist typisch für den Übergang realer Systeme zu chaotischer Dynamik. Die auffälligen Lücken im chaotischen Bereich entsprechen Inseln mit periodischem Verhalten, denen in der komplexen Ebene die Satelliten auf der „Antenne“ zugeordnet sind.

Für gewisse komplexe  -Werte stellen sich Grenzzyklen ein, die auf einer geschlossenen Kurve liegen, deren Punkte jedoch nicht periodisch, sondern chaotisch abgedeckt werden. Eine solche Kurve ist in der Chaostheorie als sogenannter seltsamer Attraktor bekannt.

Die Mandelbrot-Menge ist daher ein elementares Objekt für die Chaostheorie, an dem sich fundamentale Phänomene studieren lassen. Sie wird aus diesem Grund hinsichtlich ihrer Bedeutung für die Chaostheorie gelegentlich mit der von Geraden für die euklidische Geometrie verglichen.

Geometrische und mathematische Eigenschaften

Bearbeiten
Zoomfahrt in die Mandelbrot-Menge

Die Mandelbrot-Menge ist abgeschlossen (da ihr Komplement offen ist) und in der abgeschlossenen Scheibe mit dem Radius 2 um den Ursprung enthalten und somit kompakt.

Es sei   und   bezeichne die  -te Iteration. Ein Punkt   gehört genau dann zur Mandelbrot-Menge, falls   für alle  .

Wird der Betrag von   größer als 2, dann entkommt die Iteration ins Unendliche, der Betrag wächst über jede Grenze.   gehört dann nicht zur Mandelbrot-Menge.

Der ungeheure Formenreichtum der Mandelbrot-Menge erschließt sich aus ihrem Bezug zu Julia-Mengen. Julia-Mengen zur Iteration   sind Fraktale, außer für einige  -Werte wie   (Strecke) oder   (Kreis). Die Formen dieser fraktalen Strukturen sind innerhalb einer Julia-Menge stets die gleichen, umspannen aber für Julia-Mengen zu verschiedenem Parameter   einen enormen Formenreichtum. Es zeigt sich, dass die Strukturen der Mandelbrot-Menge in der Umgebung eines bestimmten Wertes   genau die Strukturen der zugehörigen Julia-Menge   wiedergeben. Damit enthält die Mandelbrot-Menge den kompletten Formenreichtum der unendlich vielen Julia-Mengen (s. u.).

In den fraktalen Strukturen am Rand finden sich verkleinerte ungefähre Kopien der gesamten Mandelbrot-Menge, die Satelliten. Jeder Bildausschnitt der Mandelbrot-Menge, der sowohl Punkte aus   als auch solche außerhalb von   umfasst, enthält unendlich viele dieser Satelliten. Unmittelbar am Rand eines Satelliten treten fast die gleichen Strukturen auf wie an den entsprechenden Stellen des Originals. Diese Strukturen sind jedoch nach weiter außen hin mit den Strukturen kombiniert, die für die größere Umgebung des Satelliten typisch sind.

Da jeder Satellit wiederum mit Satelliten höherer Ordnung bestückt ist, lässt sich immer eine Stelle finden, an der eine beliebige Anzahl beliebiger verschiedener Strukturen in beliebiger Reihenfolge kombiniert auftritt. Diese Strukturen sind allerdings nur bei extremer Vergrößerung erkennbar.

Die Mandelbrot-Menge ist spiegelsymmetrisch zur reellen Achse. Sie ist zusammenhängend (das heißt, sie bildet keine Inseln), wie Adrien Douady und John Hamal Hubbard 1984 bewiesen, und es wird vermutet (Douady/Hubbard), dass sie lokal zusammenhängend ist (MLC-Vermutung). Dies ist eine der großen offenen Fragen in der komplexen Dynamik und bisher unbewiesen (obwohl es Teilresultate zum Beispiel von Jean-Christophe Yoccoz gibt, der lokalen Zusammenhang für bestimmte Werte von   bewies, für die endlich-renormalisierbaren Punkte). Die MLC erlaubt weitreichende Folgerungen über die Topologie der Mandelbrot-Menge. Beispielsweise würde daraus die Hyperbolizitätsvermutung folgen, dass jede offene Menge in der Mandelbrot-Menge (also das Innere der Mandelbrot-Menge) aus Punkten mit attraktiven Zyklen besteht. Die Mandelbrot-Menge ist zwar selbstähnlich, aber nicht exakt, denn keine zwei Teilstrukturen ihres Randes sind exakt gleich; aber in der Nähe vieler Randpunkte bilden sich bei fortgesetzter Ausschnittvergrößerung im Grenzfall periodische Strukturen. An speziellen Punkten hat die Mandelbrot-Menge Selbstähnlichkeit (vermutet von John Milnor und bewiesen von Mikhail Lyubich 1999).

Da die Mandelbrot-Menge Kardioid- und Kreisflächen enthält, hat sie die fraktale Dimension 2. Der Rand der Mandelbrot-Menge hat eine unendliche Länge, und seine Hausdorff-Dimension beträgt nach Arbeiten von Mitsuhiro Shishikura ebenfalls 2; das impliziert, dass die Box-Dimension den Wert 2 hat. Es ist denkbar, dass der Rand der Mandelbrot-Menge einen positiven (notwendig endlichen) Flächeninhalt hat; andernfalls wäre dieser Flächeninhalt null. Der Flächeninhalt der Mandelbrot-Menge ist nicht bekannt und beträgt nach numerischen Schätzungen etwa 1,5065918849.[8]

Die Mandelbrot-Menge enthält deformierte Kopien aller Julia-Mengen, wie Tan Lei 1990 für die Misiurewicz-Punkte der Mandelbrot-Menge bewiesen hat, die dicht im Rand der Mandelbrot-Menge liegen. Das ist ein weiterer Beleg für die enge Verwandtschaft der Struktur von Julia- und Mandelbrot-Mengen. So wurden in den Beweisen von Yoccoz für lokalen Zusammenhang der Mandelbrot-Menge bei endlich renormalisierbaren Punkten und von Shishikura über die fraktale Dimension des Randes der Mandelbrot-Menge zuerst die entsprechenden Eigenschaften bei den zum Parameterwert gehörigen Julia-Mengen untersucht und dann auf die Mandelbrot-Menge übertragen.

Die Frage, ob die Mandelbrot-Menge entscheidbar ist, ergibt zunächst keinen Sinn, da   überabzählbar ist. Einen Ansatz, den Begriff der Entscheidbarkeit auf überabzählbare Mengen zu verallgemeinern, stellt das Blum-Shub-Smale-Modell dar. Innerhalb dessen ist die Mandelbrot-Menge nicht entscheidbar.

Bildergalerien

Bearbeiten

Galerie der Iterationen

Bearbeiten

Die folgende Galerie gibt einen Überblick über die Nullstellen einiger Polynome   der Iteration   mit  . Der Realteil   von   erstreckt sich in den Bildern von −2,2 bis 1, der Imaginärteil   von −1,4 bis 1,4.

Bild Beschreibung
 
n = 1
n = 1 (1 reelle Nullstelle)
Nach dem ersten Schritt gilt  . Das Bild ist also eine farbige Darstellung der komplexen Zahlen. Der Nullpunkt wird weiß dargestellt; je weiter ein Punkt vom Ursprung entfernt ist, desto dunkler erscheint er. Die Farbe eines Punktes gibt Auskunft über sein Argument, also über den Winkel, den er mit der positiv-reellen Achse (rot) hat. Die negativ-reelle Achse ist türkis gefärbt.
 
n = 2
n = 2 (2 reelle Nullstellen)
Nach zwei Schritten gilt  . Dieser Ausdruck wird für   sowie für   null. Die neu hinzugekommene linke Nullstelle liegt im Zentrum des Kopfes der Mandelbrot-Menge, während die alte auf der rechten Seite das Herz der Leib-Zykloiden ist.
 
n = 3
n = 3 (2 reelle und 2 konjugiert-komplexe Nullstellen)
Die Anzahl der Nullstellen hat sich auf 4 verdoppelt – wie nach jedem Iterationsschritt. Die reelle Nullstelle links liegt im Herz des kleinen Antennen-Satelliten. Es treten die ersten komplexwertigen Nullstellen ober- und unterhalb der reellen Achse auf. Diese Nullstellen liegen im Zentrum des jeweiligen Ärmchens.
 
n = 4
n = 4 (4 reelle und 4 konjugiert-komplexe Nullstellen)
Der Dutt ist entstanden: er gehört zur Nullstelle links neben der Kopf-Nullstelle bei  . Die dargestellte Funktion   wird immer unübersichtlicher. Man kann jedoch einfach nachrechnen, dass alle Nullstellen von   auch Nullstellen von   sind. Daher „erbt“   die Nullstellen von  . Dieser Zusammenhang ist Ursache für das unten erläuterte periodische Verhalten der Knospen.
 
n = 5
n = 5 (4 reelle und 12 konjugiert-komplexe Nullstellen)
Da 5 eine Primzahl ist, gibt es keine altbekannten Nullstellen – außer der Null, die von   her bekannt ist. Da der Grad des Polynoms   gleich   ist, wächst   mit wachsendem n immer schneller gegen Unendlich. Dadurch bildet sich der Rand zwischen der Mandelbrot-Menge und ihrem Äußeren immer klarer heraus.
 
n = 6
n = 6 (8 reelle und 24 konjugiert-komplexe Nullstellen)
 
n = 7
n = 7 (10 reelle und 54 konjugiert-komplexe Nullstellen)
Eine Primzahl, daher leuchten keine alten Strukturen hell auf, sondern nur neu entstandene zwischen diesen.
 
n = 8
n = 8 (20 reelle und 108 konjugiert-komplexe Nullstellen)
 
n = 9
n = 9 (30 reelle und 226 konj.-kompl. Nullstellen)
Inzwischen gibt es bereits 256 Nullstellen, die auch innerhalb der Mandelbrot-Menge verteilt sind. Da 3 ein Teiler von 9 ist, sind die Armknospen und der kleine Antennensatellit wieder mit einer Nullstelle an der Reihe, und leuchten daher hell auf.
 
n = 10
n = 10 (56 reelle und 456 konj.-kompl. Nullstellen)
 
n = 11
n = 11 (94 reelle und 930 konj.-kompl. Nullstellen)
Eine Primzahl, daher leuchten keine alten Strukturen hell auf, sondern nur neu entstandene zwischen diesen. Fast alle reellen Nullstellen befinden sich auf der Antenne im Intervall von −2 bis etwa −1,310702641336.
 
n = 12
n = 12 (180 reelle und 1868 konj.-kompl. Nullstellen)
Mit n = 12 und 211 = 2048 Nullstellen endet diese Bilderserie. Für größere n steigt die Anzahl der Null­stellen bzw. Knospen exponential weiter an, so für n = 20 auf 219 = 524288, für n = 50 auf 249 und für n = 100 auf 299.

Galerie einer Zoomfahrt

Bearbeiten

Die folgende Galerie zeigt Bilder einer Zoomfahrt in die Mandelbrot-Menge. Jedes Bild ist dabei die Vergrößerung eines kleinen Ausschnitts des vorangegangenen Bildes. Dazu wird in den 15 Bildern jeweils um einen Faktor 4 bis 8 immer tiefer in die Mandelbrot-Menge hineingezoomt. Das letzte Bild erreicht auf diese Weise einen Vergrößerungsfaktor von etwa 60 Milliarden. Die Sequenz gibt einen Eindruck vom geometrischen Formenreichtum und erläutert gewisse typische Strukturelemente.[A 5]

Bild Beschreibung
 
Bild 1
Bild 1:
Die Mandelbrot-Menge mit stufenlos eingefärbtem Außenraum.
 
Bild 2
Bild 2:
Spalte zwischen „Kopf“ und „Körper“, „Tal der Seepferdchen“ genannt.
 
Bild 3
Bild 3:
Links Doppelspiralen, rechts „Seepferdchen“.
 
Bild 4
Bild 4:
„Seepferdchen“. Der „Körper“ wird von 25 „Speichen“ gebildet, von denen sich zwei Zwölfergruppen nach Art einer Metamorphose auf jeweils einen der beiden „Finger“ an der „oberen Hand“ der Mandelbrot-Menge zurückführen lassen. Die Zahl der „Speichen“ nimmt daher von einem „Seepferdchen“ zum nächsten um zwei zu. Die „Nabe“ wird von einem Misiurewicz-Punkt gebildet (s. u.). Zwischen „Oberkörper“ und „Schwanz“ ist ein deformierter Satellit erkennbar.
 
Bild 5
Bild 5:
Der „Seepferdchenschwanz“ endet ebenfalls in einem Misiurewicz-Punkt.
 
Bild 6
Bild 6:
Teil des „Schwanzes“. Der einzige Pfad, der sich durch den gesamten „Schwanz“ windet, und damit gewährleistet, dass   einfach zusammenhängend ist, führt im Zickzack von einer „Schwanzseite“ zur anderen und passiert dabei die „Naben“ der großen 25-spiraligen Gebilde.
 
Bild 7
Bild 7:
Satellit. Die beiden „Seepferdchenschwänze“ bilden den Auftakt für eine Folge von konzentrischen Kränzen mit dem Satelliten im Zentrum.
 
Bild 8
Bild 8:
Jeder dieser Kränze besteht aus gleichartigen Strukturelementen, deren Anzahl pro Kranz mit Potenzen von 2 wächst, ein typisches Phänomen in der Umgebung von Satelliten. Der oben erwähnte Pfad durch den „Seepferdchenschwanz“ passiert den Satelliten über die Kerbe der Kardioide und die Spitze der „Antenne“ auf dem „Kopf“.
 
Bild 9
Bild 9:
„Antenne“ des Satelliten. Auf ihr sind mehrere Satelliten 2. Ordnung erkennbar.
 
Bild 10
Bild 10:
„Tal der Seepferdchen“ des Satelliten. Es zeigen sich die gleichen Strukturelemente wie in Bild 2.
 
Bild 11
Bild 11:
Doppelspiralen und „Seepferdchen“, die jedoch im Unterschied zu Bild 3 nach außen hin mit seepferdchenschwanzartigen Fortsätzen bestückt sind. Dieses Phänomen demonstriert die für Satelliten  -ter Ordnung typischen Verkettungen von   Strukturelementen für den Fall  .
 
Bild 12
Bild 12:
Doppelspiralen mit Satelliten 2. Ordnung. Sie lassen sich als Metamorphose der „Antenne“ interpretieren.
 
Bild 13
Bild 13:
Im Bereich der äußeren Fortsätze sind stets inselartige Strukturen eingestreut, die Julia-Mengen Jc ähneln. Die im Bild größte ist im Zentrum des „Doppelhakens“ rechts gerade eben erkennbar.
 
Bild 14
Bild 14:
Teil des „Doppelhakens“.
 
Bild 15
Bild 15:
Diese Inseln scheinen auf den ersten Blick nach Art von Cantor-Mengen wiederum aus unendlich vielen unzusammenhängenden Teilstücken zu bestehen, wie es für die zugehörigen Jc tatsächlich der Fall ist, sie sind jedoch hier über filigrane Strukturen miteinander verbunden. Diese Strukturen gehen von einem Satelliten im Zentrum aus, der bei dieser Vergrößerung noch nicht sichtbar ist, und zwar derart, dass das Ganze ein einfach zusammenhängendes Gebilde ergibt. Der zum entsprechenden Jc gehörige  -Wert ist nicht der des Bildzentrums, sondern hat relativ zur Hauptkardioide die gleiche Position wie das Bildzentrum zum Satelliten, der in Bild 8 dargestellt ist.

Verhalten der Zahlenfolge

Bearbeiten

Die verschiedenen Strukturelemente von   stehen in engem Zusammenhang mit bestimmten Verhaltensweisen der Zahlenfolge, die   zugrunde liegt. Je nach Wert von   ergibt sich eine der folgenden vier Möglichkeiten:

  • _ Sie konvergiert gegen einen Fixpunkt.
  • ____ Sie konvergiert gegen einen periodischen Grenzzyklus, der aus zwei oder mehr Werten besteht. Dazu zählen auch die Fälle, in denen sich die Folge von Anfang periodisch verhält.
  • _ Sie wiederholt sich nie, bleibt aber beschränkt. Manche Werte zeigen chaotisches Verhalten mit Wechsel zwischen fast periodischen Grenzyklen und scheinbar zufälligem Verhalten.
  • _ Sie divergiert gegen Unendlich (bestimmte Divergenz).

Alle  -Werte, die nicht bestimmt divergieren, gehören zu  .

Die folgende Tabelle zeigt Beispiele für diese vier Grenzverhalten der Iteration   für  :

Parameter   und Glied   Folgeglieder   Grenzverhalten
auf der reellen Achse …
    bestimmte Divergenz gegen  
    bestimmte Divergenz gegen  
    sofortige Konvergenz gegen Fixpunkt  
    Konvergenz gegen 12er-Grenzzyklus
    sofortige Konvergenz gegen Dreier-Grenzzyklus
    Konvergenz gegen Dreier-Grenzzyklus  
    chaotisches Verhalten
    Konvergenz gegen 32er-Grenzzyklus
    Konvergenz gegen alternierenden Grenzzyklus  
    sofortige Konvergenz gegen alternierenden Grenzzyklus  
    sehr langsame Konvergenz gegen Fixpunkt  
    Konvergenz gegen Fixpunkt  
    Konvergenz gegen Fixpunkt  
    sofortige Konvergenz gegen Fixpunkt  
    Konvergenz gegen Fixpunkt  
    bestimmte Divergenz gegen  
    bestimmte Divergenz gegen  
in der komplexen Zahlenebene …
    sofortige Konvergenz gegen alternierenden Grenzzyklus  
   
 
Konvergenz gegen Dreier-Grenzzyklus
 
 
 
 
 
 
 
sofortige Konvergenz gegen Dreier-Grenzzyklus

Geometrische Zuordnung

Bearbeiten

Konvergenz liegt genau für die Werte von   vor, die das Innere der Kardioide bilden, den „Körper“ von  , sowie für abzählbar viele ihrer Randpunkte. Periodische Grenzzyklen finden sich in den (angenähert) kreisförmigen „Knospen“ wie im „Kopf“, in den Kardioiden der Satelliten sowie ebenfalls auf abzählbar vielen Randpunkten dieser Komponenten. Eine fundamentale Vermutung besagt, dass es für alle inneren Punkte der Mandelbrot-Menge einen Grenzzyklus gibt. Die Folge ist echt vorperiodisch für abzählbar viele Parameter, die oft Misiurewicz-Thurston-Punkte genannt werden (nach Michał Misiurewicz und William Thurston). Dazu gehören die „Antennenspitzen“ wie der Punkt   ganz links und Verzweigungspunkte der Mandelbrot-Menge.

In den überabzählbar vielen übrigen Punkten der Mandelbrot-Menge kann sich die Folge auf viele verschiedene Weisen verhalten, die jeweils sehr unterschiedliche dynamische Systeme erzeugen und die teilweise Gegenstand intensiver Forschung sind. Je nach Definition des Wortes lässt sich „chaotisches“ Verhalten finden.

Periodisches Verhalten

Bearbeiten
 
Mandelbrot-Menge mit farbkodierter Periodenlänge der Grenzzyklen

Die kreisförmigen Strukturen

Bearbeiten

Jede kreisförmige „Knospe“ und jede Satelliten-Kardioide zeichnet sich durch eine bestimmte Periodizität des Grenzzyklus aus, gegen den die Folge für die zugehörigen  -Werte strebt. Die Anordnung der „Knospen“ an der zugehörigen Kardioide folgt dabei den folgenden Regeln, aus denen sich unmittelbar die Periodizitäten ablesen lassen. Jede „Knospe“ berührt genau einen Basiskörper, nämlich eine größere „Knospe“ oder eine Kardioide.

Die Periodizität einer „Knospe“ ist die Summe der Periodizitäten der beiden nächsten größeren „Nachbarknospen“ in beide Richtungen am selben Basiskörper, sofern es solche gibt. Gibt es am Rand des Basiskörpers bis zur Kontaktstelle mit dessen Basiskörper oder bis zur Kerbe der Kardioide nur kleinere „Knospen“, so trägt anstelle der Periodizität einer „Nachbarknospe“ die des Basiskörpers selbst zur Summe bei. Daraus leiten sich unmittelbar die folgenden Eigenschaften ab:

  • Tendenziell sind die „Knospen“ oder Kardioiden umso kleiner, je größer ihre Periodizität ist.
  • Die Periodizität der größten „Knospe“ an einem Basiskörper beträgt stets das Doppelte, wie der „Dutt“ mit der Periode 4 am „Kopf“.
  • Die Periodizität einer „Knospe“ eines Satelliten ist das Produkt der Periodizität der Satelliten-Kardioide und der der korrespondierenden „Knospe“ der Hauptkardioide.

Ferner erklärt diese Regel das Auftreten bestimmter Folgen von „Knospen“ wie vom „Kopf“ zur Kardioidkerbe hin mit einer Periodizitätszunahme zur nächsten „Knospe“ hin um den Wert 1 oder vom „Arm“ zum „Kopf“ hin um den Wert 2.

Attraktive Zyklen

Bearbeiten

Gibt es für ein   ein Folgenglied mit der Eigenschaft  , so wiederholt sich die Folge von Anfang an streng periodisch und zwar mit der Periode  . Da sich   durch  -malige Anwendung der Iterationsvorschrift ergibt, wobei bei jedem Schritt quadriert wird, lässt es sich als Polynom von   vom Grad   formulieren. Die  -Werte für periodische Folgen der Periode   werden daher über die   Nullstellen dieses Polynoms erhalten. Es zeigt sich, dass jede Zahlenfolge gegen diesen Zahlenzyklus konvergiert, sofern eins ihrer Folgenglieder hinreichend nahe an diesen Zyklus gerät, die werden Attraktoren genannt. Das führt dazu, dass alle Zahlenfolgen zu einer gewissen Umgebung des  -Wertes, der den Attraktor repräsentiert, gegen einen stabilen Zyklus der Periode   konvergieren. Jede kreisförmige „Knospe“ und jede Kardioide eines Satelliten repräsentiert genau eine solche Umgebung. Exemplarisch seien die Gebiete mit den Perioden 1 bis 3 aufgeführt:

  • Periode 1: Die Kardioide des Hauptapfelmännchens. Der Rand dieser Kardioide ist gegeben durch Punkte der Form   mit  .
  • Periode 2: Der „Kopf“. Die 2. Nullstelle   entspricht der Hauptkardioide, die wegen der Periode 1 natürlich bei der Ermittlung aller höherer Perioden als Nullstelle auftritt. Diese Überlegung zeigt, dass die Zahl der Attraktoren mit der Periode   maximal   betragen kann, und das nur dann, wenn   eine Primzahl ist. Der Kopf selbst ist eine Kreisscheibe mit Mittelpunkt   und Radius  , d. h., der Rand dieser Kreisscheibe ist gegeben durch Punkte der Form   mit  .
  • Periode 3: Die „Knospen“, die den „Armen“ entsprechen und die Kardioide des größten Satelliten auf der „Kopfantenne“. Die vierte Nullstelle   entfällt wieder.

Die Anzahl der anziehenden Zyklen mit der genauen Periode  , d. h.   und   ist minimal mit dieser Eigenschaft, ist die Folge A000740 in OEIS.

Repulsive Zyklen

Bearbeiten

Neben attraktiven Zyklen gibt es repulsive, die sich dadurch auszeichnen, dass Zahlenfolgen in ihrer Umgebung sich zunehmend von ihnen entfernen. Sie lassen sich jedoch erreichen, da jedes   abgesehen von der Situation   wegen des Quadrats in der Iterationsvorschrift zwei potenzielle Vorgänger in der Folge hat, die sich nur durch ihr Vorzeichen unterscheiden.  -Werte, für die die zugehörige Folge irgendwann über einen solchen zweiten Vorläufer eines Periodenmitgliedes in einen derartigen instabilen Zyklus mündet, sind beispielsweise die „Naben“ der rad- oder spiralförmigen Strukturen sowie die Endpunkte der weitverbreiteten antennenartigen Strukturen, die sich formal als „Naben“ von „Rädern“ oder Spiralen mit einer einzigen Speiche interpretieren lassen. Derartige  -Werte werden als Misiurewicz-Punkte bezeichnet.

Ein Misiurewicz-Punkt   hat ferner die Eigenschaft, dass   in seiner näheren Umgebung nahezu deckungsgleich mit demselben Ausschnitt der zugehörige Julia-Menge   ist. Je weiter sich dem Misiurewicz-Punkt genähert wird, umso besser wird die Übereinstimmung. Da Julia-Mengen für  -Werte innerhalb von   zusammenhängend sind und außerhalb von   Cantor-Mengen aus unendlich vielen Inseln mit der Gesamtfläche null, sind sie in der Übergangszone am Rand von   besonders filigran. Jeder Misiurewicz-Punkt ist aber gerade ein Randpunkt von  , und jeder Ausschnitt der Randzone von  , der sowohl Punkte in   als auch außerhalb davon enthält, enthält unendlich viele davon. Damit ist der gesamte Formenreichtum sämtlicher Julia-Mengen dieses filigranen Typs in der Umgebung der Misiurewicz-Punkte in   repräsentiert.

Satelliten

Bearbeiten
 
Analyse des Verhaltens des Newton-Verfahrens zu einer Familie kubischer Polynome.

Ein weiteres Strukturelement, das den Formenreichtum der Mandelbrot-Menge begründet, sind die verkleinerten Kopien ihrer selbst, die sich in den filigranen Strukturen ihres Randes befinden. Dabei korrespondiert das Verhalten der Zahlenfolgen innerhalb eines Satelliten in folgender Weise mit dem der Folgen im Hauptkörper. Innerhalb eines Satelliten konvergieren alle Zahlenfolgen gegen Grenzzyklen, deren Perioden sich von denen an den entsprechenden Stellen im Hauptkörper von   um einen Faktor   unterscheiden. Wird für einen bestimmten  -Wert aus dem Satelliten nur jedes  -te Folgenglied betrachtet, so ergibt sich eine Folge, die bis auf einen räumlichen Maßstabsfaktor nahezu identisch ist mit derjenigen, die sich für den entsprechenden  -Wert im Hauptkörper von   ergibt. Die mathematische Begründung hierfür ist tiefliegend; sie entstammt den Arbeiten von Douady und Hubbard über „polynomartige Abbildungen“.

Die zusätzlichen Strukturelemente in der unmittelbaren Umgebung eines Satelliten sind eine Folge davon, dass zwischen zweien der betrachteten Folgenglieder mit dem Indexabstand   sich eines mit dem Wert   befinden kann, das damit einen periodischen Verlauf mit der Periode   begründet. Die entsprechende Folge außerhalb des Hauptkörpers divergiert jedoch, da sie keine solchen Zwischenglieder besitzt.

Es handelt sich bei der Mandelbrot-Menge selbst um eine universelle Struktur, die bei völlig anderen nichtlinearen Systemen und Klassifizierungsregeln in Erscheinung treten kann. Grundvoraussetzung ist jedoch, dass die beteiligten Funktionen winkeltreu sind. Werden solche Systeme betrachtet, die von einem komplexen Parameter   abhängen, und klassifiziert man ihr Verhalten bezüglich einer bestimmten Eigenschaft der Dynamik in Abhängigkeit von  , dann werden unter bestimmten Umständen in der Parameter-Ebene kleine Kopien der Mandelbrot-Menge gefunden. Ein Beispiel ist die Frage, für welche Polynome dritten Grades das iterative Newton-Verfahren zur Bestimmung von Nullstellen mit einem bestimmten Startwert versagt und für welche nicht.

Wie im Bild kann die Mandelbrot-Menge dabei verzerrt auftreten, zum Beispiel sitzen dort die Armknospen an etwas anderer Stelle. Ansonsten ist die Mandelbrot-Menge jedoch vollkommen intakt, inklusive aller Knospen, Satelliten, Filamente und Antennen. Der Grund für das Auftauchen der Mandelbrot-Menge ist, dass die betrachtete Funktionenfamilien in bestimmten Gebieten – abgesehen von Drehungen und Verschiebungen – recht gut mit der Funktionenfamilie  , welche die Mandelbrot-Menge definiert, übereinstimmen. Dabei sind in einem gewissen Rahmen Abweichungen zulässig, und trotzdem kristallisiert sich die Mandelbrot-Menge heraus. Dieses Phänomen wird als strukturelle Stabilität bezeichnet und ist im Endeffekt verantwortlich für das Auftreten der Satelliten in der Umgebung von  , weil Teilfolgen der iterierten Funktionen lokal das gleiche Verhalten zeigen wie die Gesamtfamilie.

 
Darstellung des Betrages der Folgenglieder als Funktion des Iterationsschrittes   für einen  -Wert mit besonders abwechslungs­reichem Verhalten der Folge. Die auffälligen Brüche im Verhalten ergeben sich durch Beinahe-Einfänge in repulsive Zyklen, was temporär zu quasi­periodischem Verhalten führt.[A 6]

Intermediär wechselhaftes Verhalten

Bearbeiten
 
Darstellung der Folgenglieder zum  -Wert des vorherigen Diagramms als Punkte in der komplexen Ebene mit hinterlegter Mandelbrot-Menge zur Orientierung. Die Helligkeit eines Pixels ist ein Maß dafür, von wie vielen Punkten der Folge es getroffen wurde.[A 6]

Durch die Möglichkeit der Zahlenfolge, wiederholt in die unmittelbare Umgebung eines repulsiven Zyklus zu geraten, und bei dem anschließend tendenziell divergenten oder chaotischen Verhalten wiederum beinahe in einen anderen Zyklus zu geraten, können sich intermediär sehr komplizierte Verhaltensweisen der Folge ausbilden, bis sich der endgültige Charakter der Folge zeigt, wie die beiden Abbildungen demonstrieren. Die Umgebung der zugehörigen  -Werte in   ist entsprechend strukturreich.

Die Darstellung der Folgepunkte selbst in der komplexen Ebene zeigt in diesen Fällen eine größere Komplexität. Das quasiperiodische Verhalten in der Nachbarschaft eines repulsiven Zyklus führt in diesen Fällen oft zu spiralförmigen Strukturen mit mehreren Armen, wobei die Folgepunkte das Zentrum umkreisen, während der Abstand zu ihm zunimmt. Die Anzahl der Arme entspricht daher der Periode. Die Punktanhäufungen an den Enden der Spiralarme in der zweiten Abbildung sind die Folge der beiden zugehörigen Beinahe-Einfänge durch repulsive (instabile) Zyklen.

Dichteverteilung der Folgenglieder

Bearbeiten
 
Akkumulierte Dichteverteilung der Folgenglieder für alle c-Werte in einer farbkodierten Darstellung

Das Bild zeigt in der komplexen Ebene die Dichteverteilung der Folgenglieder, die sich durch Auswertung von 60 Millionen Folgen ergibt, wobei die Helligkeit ein Maß dafür ist, wie viele Orbitale durch den Punkt verlaufen. Blaue Bereiche kennzeichnen Folgenglieder mit kleinem Index, während eine gelbliche Färbung Folgenglieder mit hohen Indizes anzeigt. Folgen aus der großen Kardioide der Mandelbrot-Menge tendieren zu einer Konvergenz zu einem  -Wert auf einem Kreis um den Ursprung, der als runder Bereich mit sehr hoher Dichte zu erkennen ist. Die kleineren Gebilde nahe der imaginären Achse markieren die konjugierten Bereiche, zwischen denen Folgenglieder vieler Folgen hin und her springen (Annäherung an einen Grenzzyklus mit der Periode 2 für große Folgenindizes).

Praktische Berechnung

Bearbeiten

Die grafische Darstellung der Mandelbrot-Menge und ihrer Strukturen im Randbereich ist nur mittels Computer durch sogenannte Fraktalgeneratoren möglich. Dabei entspricht jeder Bildpunkt einer Zahl   der komplexen Ebene. Der Computer ermittelt für alle Bildpunkte, ob die zugehörigen Folgen divergieren oder nicht. Sobald der Betrag   eines Folgengliedes die Fluchtgrenze   überschreitet, ist klar, dass die Folge divergiert; die Iterationszahl   kann als Maß für den Divergenzgrad dienen. Die Bildpunkte werden nach einer Farbtabelle eingefärbt, die jeder Iterationszahl eine Farbe zuordnet.[4]

Für harmonische Farbübergänge wird in der Praxis ein Fluchtradius   gewählt, da andernfalls die Breite der Farbstreifen zu sehr oszilliert. Je größer der Fluchtradius gewählt wird, desto besser entsprechen die Farbgrenzen den Äquipotentiallinien, die sich ergeben, wenn die Mandelbrot-Menge als elektrisch geladener Leiter interpretiert wird. Für kontinuierliche Farbverläufe, wie in der obigen Galerie einer Zoomfahrt, ist es erforderlich, entweder die genaue Fluchtzeit   zu bestimmen, bei der der Fluchtradius   gerade erreicht wird, oder den Abstand   zum Rand der Menge abzuschätzen.[9]

Da die Anzahl der Iterationsschritte  , nach der die Fluchtgrenze   überschritten wird, beliebig groß sein kann, muss als Abbruchkriterium eine maximale Iterationszahl   festgelegt werden. Alle Zahlen  , deren Folgen danach einen Fluchtradius   noch nicht erreicht haben, werden zur Menge   gezählt. Je geringer der Abstand von   zum Rand der Menge ist, desto größer ist in der Regel die Iterationszahl  , bei der   erreicht oder überschritten wird. Je stärker die Vergrößerung ist, mit der der Rand dargestellt wird, desto größer muss die maximale Iterationszahl   gewählt werden, und umso mehr Rechenzeit ist nötig. Kann man erkennen, dass die Folge für eine Zahl   konvergiert, so kann die Berechnung der Folge schon früher abgebrochen werden.

Grafisch besonders reizvoll ist die Darstellung des Randes von   mit seinem Formenreichtum. Je stärker die gewählte Vergrößerung ist, umso komplexere Strukturen lassen sich dort finden. Mit entsprechenden Computerprogrammen lässt sich dieser Rand wie mit einem Mikroskop mit beliebiger Vergrößerung darstellen. Zur Untersuchung interessanter Strukturen sind häufig Vergrößerungen erforderlich, die mit hardwareunterstützten Datentypen aufgrund deren limitierter Genauigkeit nicht berechnet werden können. Manche Programme enthalten daher Langzahlarithmetik-Datentypen mit beliebig wählbarer Genauigkeit. Damit sind (fast) beliebige Vergrößerungsfaktoren möglich.

Fluchtzeiten und Distanzschätzungen

Bearbeiten

Wenn der Fluchtradius groß genug ist, kann zur Bestimmung der Fluchtzeiten anstelle der eigentlichen Folge   mit Anfangswert   die vereinfachte Folge   mit Anfangswert   betrachtet werden. Die ersten Folgenglieder sind dann  ,  ,   und  , ganz allgemein erhält man das Folgenglied  . Betrachtet man die Iterationszahl  , bei der die Folge einen Fluchtradius   erreicht oder überschreitet, so gilt   und  . Sucht man nun die Fluchtzeit   mit   und  , so erhält man  . Wegen   ist   und es gilt:[10][11]

 [A 7]

Somit erhält man die Fluchtzeit   durch eine Korrektur (Normalisierung) der Iterationszahl  . Die äquivalente Gleichung   weist auf die enge Beziehung der Potentialfunktionen   und   hin. Häufig wird das Potential als Grenzwert   definiert; die Potentialfunktion   zur Eulerschen Zahl mit   wird als Greensches Potential   bezeichnet.[12][13]

Für die Distanzschätzungen wird die Ableitung   benötigt. Die ersten Folgenglieder sind  ,  ,   und  , die zugehörigen Ableitung sind  ,  ,   und  . Alle weiteren Folgenglieder und Ableitungen ergeben sich aus der Iterationsvorschrift   und der Ableitungsregel  . Die Schätzformel ergibt sich aus dem Quotienten des Potentials   und dem Betrag des Gradienten  . Mit dem natürlichen Logarithmus ist  , und mit   gilt:[14][13]

 [A 8]

Um die Formel einzusehen, können die vereinfachten Folgen   und   mit den Anfangswerten   und   betrachtet werden. Die ersten Folgenglieder sind dann  ,  ,   und  , die zugehörigen Ableitungen sind  ,  ,   und  . Ganz allgemein erhält man so das Folgenglied   und die Ableitung  . Die zugehörige Julia-Menge ist genau der Rand des Einheitskreises.

Die Schätzformel ergibt

 

was in der Nähe des Einheitskreises eine gute Näherung für den Abstand   zum Rand ist:   ergibt   und   ergibt  . Wenn also die wirkliche Entfernung zur Mandelbrot-Menge gleich   ist, so ergibt die Schätzformel den Wert

 

Es stimmt aber nicht, dass der Grenzwert   gegen die wirkliche Entfernung   konvergiert, tatsächlich gelten nur schwächere Ungleichungen. Mithilfe der Lambert-W-Funktion kann die Approximation jedoch etwas verbessert werden:[15][16]

 

Deep Zoom und Störungsrechnung

Bearbeiten
 
Vergleich der Blockartefakte mit dem Original (beide Bilder haben dieselbe Pixelanzahl)[A 6]

Prozessoren unterstützen in Hardware die Berechnung mit typischerweise 32-bit- und 64-bit-Gleitkommazahlen. Dies ermöglicht es, in die Mandelbrot-Menge etwa um den Faktor 1012 bis 1013 hineinzuzoomen, bevor benachbarte Pixel keine unterschiedlichen Startwerte   mehr annehmen können (und damit Fehler durch Blockartefakte offensichtlich werden).

Ab diesem Punkt reicht die Genauigkeit der in Hardware implementierten Arithmetik nicht mehr aus. Man ist gezwungen, auf in Software implementierte Routinen für hochgenaue Arithmetik auszuweichen, was bei aktuellen Prozessoren zu einem immensen Geschwindigkeitseinbruch führt.

Man kann diesen deutlich durch Nutzen von Störungsrechnung reduzieren. Diese Methode wurde 2013 von Kevin Martin beschrieben und 2021 von Zhuoran Yu um eine automatische Fehlerkorrektur erweitert.[17][18]

Dazu wird ein (möglichst nicht divergenter) Referenzpunkt   in hochgenauer Arithmetik durchgerechnet und die Referenzserie   wird aufgezeichnet:

 

Für in der direkten Nähe liegende Punkte   würde sich die Serie   ergeben:

 

Man will nun die Abweichung   indirekt ermitteln, um die direkte Berechnung der Serie   zu vermeiden. Dabei gilt:

  für die Berechnung des Referenzpunktes und
  mit   und   für die Berechnung des Nachbarpunktes.

Setzt man ein, ergibt sich

 

Man betrachtet die beiden äußeren Terme

  und multipliziert aus
  und setzt  
  und löst die Klammern auf und kürzt
  und erhält
 

Wegen   und   ist auch  . Mit der abgespeicherten Referenzserie   können die Abweichungen   der Reihe nach berechnet werden:

 
 
 
 
 

Solange diese Terme klein bleiben, verhält sich   ähnlich wie  . Insbesondere bleibt die Serie   beschränkt, wenn die Referenzserie   und die Abweichungen   beschränkt sind. Wenn die Abweichungen jedoch zu groß werden, kann das zu Fehlern in der Darstellung (Glitches) führen. Im Prinzip kann man dann auf einen günstigeren Referenzpunkt innerhalb der Referenzserie ausweichen: Liegt ein Punkt   näher am Referenzpunkt   als am Referenzpunkt  , so kann er auch durch   dargestellt und die neue Abweichung aus der Differenz   berechnet werden. Allerdings verliert man bei einer solchen Subtraktion aufgrund der Auslöschung die notwendige Genauigkeit. Nur beim ersten Referenzpunkt   passiert das nicht, und die neue Abweichung ergibt sich zu  . Man kann also jederzeit zum Anfang der Referenzserie zurückkehren, wenn der Abstand zu   kleiner als der Abstand zu   ist, d. h. wenn   ist. Durch dieses gelegentliche Zurücksetzen der Referenzserie (Rebasing) werden die Abweichungen   möglichst klein gehalten.

Praktische Anwendung

Das Programm „Kalles Fraktaler“ basierte auf diesem Ansatz, und neuere Entwicklungen haben zu einer Generation noch leistungsfähigerer Fraktalgeneratoren geführt.[19][20]

Probleme
  1. Der verwendete Referenzpunkt sollte möglichst innerhalb der zu untersuchenden Iterationen nicht divergieren, da die Nachbarpunkte maximal bis zu dem Abbruch der Referenzserie untersucht werden können. Alle Punkte mit einer größeren Iterationszahl müssen erneut berechnet werden. Die Auswahl und das Verwerfen von sich als ungeeignet herausgestellten Referenzpunkten stellt eine Herausforderung dar.
  2. Für die Berechnung der Abweichungen   wird keine hohe Genauigkeit benötigt, allerdings ist der Wertebereich von 64-bit-Gleitkommazahlen arg limitiert. Ab etwa 10300 muss man leider mit eigenen Mathematikroutinen arbeiten, die zwar nur eine 52/64 bit-Mantisse benötigen, aber deutlich langsamer als hartkodierte Gleitkomma-Operationen sind (die aber wesentlich schneller als Berechnungen mit langen Mantissen sind).[21]
  3. Man benötigt Speicherbandbreite für das Lesen der Referenzserie  . Die erste Verlangsamung gibt es, wenn diese nicht mehr in den L2-Cache passt, sehr viel langsamer wird es, wenn der L3-Cache nicht mehr ausreicht und auf den RAM zugegriffen werden muss.
  4. Es gibt Abweichungen zwischen der nativen Iteration mit   und der Störungsrechnung basierend auf  . Sieht man sich das ganze genauer an, ist die Berechnung basierend auf   meistens genauer, wenn die Referenzpunktberechnung hinreichend genau war (was mit Langzahlarithmetik für diesen einen Wert aber problemlos machbar ist).

Berechnungsgeschwindigkeit

Bearbeiten

Berechnungen nahmen beim Stand der Technik Ende der 1980er Jahre viel Zeit in Anspruch. Vergleichsweise zeigt dies eine Aufstellung durch die Anzahl der Iterationen, die verschiedene CPUs pro Sekunde durchführen konnten.

CPU Jahr Genauigkeit (Software) Geschwindigkeit
in Iterationen/sec
Rechendauer für
8,8 Mrd. Iterationen
Z80 @1,75 MHz 1987 32 bit Gleitkomma (1.) 9 31 Jahre
Z80 @2,45 MHz 32 bit Integer (2.) 280 01 Jahr
80386 SX/20 +
IIT 3C87SX/20
1992 32 bit Integer (3.) 130.000 19 Stunden
80 bit Gleitkomma (FPU) (3.) 75.000 33 Stunden
80 bit Gleitkomma (Emulation Borland) (3.) 2.000 51 Tage
Pentium 90 1994 32 bit Integer (3.) 1.450.000 01 Stunde 40 Minuten
80 bit Gleitkomma (3.) 2.900.000 50 Minuten
Xeon E5-2623 v3
× 2 (Dual Socket)
2015 32 bit Gleitkomma (4.) 50.000.000.000 0,177 Sekunden
64 bit Gleitkomma (4.) 25.000.000.000 0,35 Sekunden
Eingesetzte Software
  1. BASIC-Interpreter des KC 85/3
  2. Selbst geschriebener Assemblercode[A 9]
  3. Borland C++ mit integriertem Assembler, die Gleitkomma-Emulation dieses Compilers war vergleichsweise langsam[A 10]
  4. Visual Studio C++ mit Intel Intrinsics, Nutzung von AVX2 und Fused multiply-add, multithreaded, 2 Threads pro Core
Eingesetzte Prozessoren
  • Z80: 8-Bit-Prozessor ohne Hardware-Multiplikation
  • 80386: 32-Bit-Prozessor mit Hardware-Multiplikation und Gleitkomma-Koprozessor
  • Pentium: 32-Bit-Prozessor mit Hardware-Multiplikation und mit eingebautem Gleitkomma-Koprozessor
  • Xeon E5-2623: Vektorbefehle, 4 Kerne/8 Threads pro Sockel

Rezeption in der Öffentlichkeit

Bearbeiten
 
Computergenerierte Landschaft einer Insel in Form der Mandelbrot-Menge (gerendert mit dem Programm Terragen)

Außerhalb der Fachwelt wurde die Mandelbrot-Menge vor allem durch den ästhetischen Wert der Computergrafiken bekannt, der durch künstlerische Farbgestaltung des Außenbereichs, der nicht zur Menge gehört, unterstützt wird. Sie erlangte durch Publikationen von Bildern in den Medien Ende der 1980er Jahre einen für ein mathematisches Thema dieser Art ungewöhnlich großen Bekanntheitsgrad und dürfte bis heute (Stand 2023) das populärste Fraktal sein, sowie auch eines der populärsten Objekte der zeitgenössischen Mathematik.[22]

Die Mandelbrot-Menge wird als das formenreichste geometrische Gebilde bezeichnet. Sie hat Computerkünstler inspiriert und zu einem Aufschwung fraktaler Konzepte beigetragen. Dabei finden zahlreiche Modifikationen des Algorithmus Anwendung, welcher der Mandelbrot-Menge zugrunde liegt.

Ein weiterer Aspekt ist der extreme Kontrast zwischen diesem und der Einfachheit des zugrunde liegenden Algorithmus, der an biologische Systeme erinnert, bei denen nach naturwissenschaftlicher Sicht ebenfalls aus einer vergleichsweise geringen Zahl von Regeln äußerst komplexe Systeme entstehen können, sowie die Nähe zur Chaosforschung, die ebenfalls in der Öffentlichkeit großes Interesse geweckt hatte.

Die Bezeichnung ,Apfelmännchen‘ leitet sich von der geometrischen Grobform einer um 90 Grad im Uhrzeigersinn gedrehten Mandelbrot-Menge her.

Der US-amerikanische Musiker Jonathan Coulton hat ein Lied über die Mandelbrot-Menge veröffentlicht, in dem Benoît Mandelbrot dafür gedankt wird, dass er Ordnung in das Chaos gebracht habe.[23]

Verwandte Themen

Bearbeiten

Anmerkungen

Bearbeiten
  1. Im Bild rechts mit 4000 × 3000 Pixeln ist c0 = −0,7 (Mittelpunkt) und a = b = 3,1 / 4000 = 0,000775 (Pixelgröße) gewählt worden. Die Pixel­koordinate x läuft von −2000 bis 1999 und y von −1500 bis 1499. Dabei wird die komplexe Zahlen­ebene im Realteil von −2,25 bis 0,85 und im Imaginärteil von −1,1625 bis 1,1625 abgerastert.
  2. Im Bild rechts wird die 5 als dunkelrot, 10 als blau, 15 als grün und 20 als türkis kodiert. Die Mandelbrot-Menge im Inneren selbst wird wie oft üblich schwarz kodiert.
  3. Ausgabe auf einem Blatt Papier mit einem Drucker mit ca. 72 x 35 Pixeln Auflösung.
  4. Darstellung der Grenzzyklen der logistischen Gleichung nach einer entsprechenden Koordinaten­transformation. Für Details siehe die Bildbeschreibung.
  5. Eine Animation genau dieser Zoomfahrt befindet sich auf der Webseite Zoomfahrt in die Mandelbrot-Menge.
  6. a b c Bild erstellt mit dem Mandelbrot-Explorer RudiMBM/DeepChaos.
  7. Die Folge   mit   verhält sich für große   mit   wie eine einfache Folge   mit  . Der genaue Anfangswert   kürzt sich jedoch bei der Basisumrechnung heraus und ist daher ohne Bedeutung.
  8. Eine Division durch   ist im Außenbereich   immer möglich, da alle Nullstellen von   und   im Innenbereich   liegen (vgl. den Satz von Gauß-Lucas).
  9. der allerdings noch nicht das theoretische Limit darstellte, die verwendet Multiplikation war schnell, es gibt aber noch schnellere, siehe Multiplication 32 x 32 bit, base case
  10. Compiler, die direkte Bibliotheksaufrufe erzeugten und bei Vorhandensein einer 32-bit-CPU 32-bit-Befehle nutzten, waren deutlich schneller. Keine Messwerte mehr verfügbar.

Literatur

Bearbeiten
Bearbeiten
Commons: Mandelbrot-Menge – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Mandelbrotmenge – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Wikibooks: Das Apfelmännchen – Lern- und Lehrmaterialien

Einzelnachweise

Bearbeiten
  1. Robert Brooks, J. Peter Matelski: The dynamics of 2-generator subgroups of PSL(2,C). In: Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference. In: Annals of Mathematics Studies. Band 97, Princeton University Press, Princeton, N.J., 1981, S. 65–71. PDF; 0,9 MB.
  2. Benoît Mandelbrot: Fractal aspects of the iteration of   for complex  . In: Annals of the New York Academy of Sciences. 357, 249–259.
  3. Adrien Douady, John H. Hubbard: Etude dynamique des polynômes complexes. In: Prépublications mathématiques d’Orsay. 2/4, 1984/1985. PDF; 5,2 MB (Memento vom 30. Januar 2017 im Internet Archive). Englische Übersetzung: PDF; 1,6 MB.
  4. a b Robert P. Munafo: Escape Radius. In: mrob.com. 1997; (englisch).
  5. Lei Tan: Similarity between the Mandelbrot set and the Julia sets. In: Communications in Mathematical Physics. 1990, Band 134, Nr. 3, S. 587–617. PDF; 2,8 MB. Bei: ProjectEuclid.org.
  6. Mitsuhiro Shishikura: The Hausdorff Dimension of the Boundary of the Mandelbrot Set and Julia Sets. In: Annals of Mathematics. Band 147, Nr. 2, 1998, ISSN 0003-486X, S. 225–267, doi:10.2307/121009, JSTOR:121009.
  7. John H. Hubbard: Local connectivity of Julia Sets and bifurcation loci. Three Theorems of J.-C. Yoccoz. Hubbard zitiert in seiner Arbeit auf Seite 511 ein unveröffentlichtes Manuskript von J.-C. Yoccoz. PDF; 0,4 MB. 1993.
  8. Thorsten Förstemann: Numerische Flächenabschätzung der Mandelbrotmenge. In: foerstemann.name. 2018; (PDF; 0,9 MB 2012, PDF; 1,0 MB 2016, PDF; 3,3 MB 2017).
  9. Robert P. Munafo: Equipotential Lines. In: mrob.com. 2023; (englisch).
  10. Inigo Quilez: Continuous iteration count. In: iquilezles.org. 2007; (englisch).
  11. Jussi Härkönen: On Smooth Fractal Coloring Techniques. The Smooth Iteration Count Coloring. In: archive.org. 2007, S. 14–26; (englisch, PDF; 80 MB).
  12. Arnaud Chéritat: Mandelbrot set. The potential. In: math.univ-toulouse.fr. 2016; (englisch).
  13. a b Kees van den Doel: Fractal Images. Technical notes. In: persianney.com. 2018, S. 1–2; (englisch, PDF; 0,2 MB).
  14. Inigo Quilez: Computing the SDF of fractals. In: iquilezles.org. 2004; (englisch).
  15. Mikael Hvidtfeldt Christensen: Distance Estimated 3D Fractals: The Mandelbulb & Different DE Approximations. The potential gradient approximation. In: blog.hvidtfeldts.net. 2011; (englisch).
  16. Yumei Dang, Louis Kauffman, Daniel Sandin: Hypercomplex Iterations: Distance Estimation and Higher Dimensional Fractals. Distance Estimation in Complex Space. In: evl.uic.edu. 2002, S. 13–29; (englisch, PDF; 4,1 MB).
  17. Phil Thompson: Perturbation Theory and the Mandelbrot set. In: philthompson.me. 2022; (englisch).
  18. Robert P. Munafo: Perturbation Methods. In: mrob.com. 2023; (englisch).
  19. Claude Heiland-Allen: Kalles Fraktaler 2 +. In: mathr.co.uk. 2022; (englisch).
  20. Microfractal: New deep zoom algorithms for fractals. In: deviantart.com. 2022; (englisch).
  21. Robert P. Munafo: Floatexp. In: mrob.com. 2023; (englisch).
  22. Peitgen, Jürgens, Saupe: Chaos, Bausteine der Ordnung. Rowohlt, ISBN 3-499-60551-1, S. 431.
  23. Jonathan Coulton: Mandelbrot Set. (Memento vom 25. Januar 2017 im Internet Archive).