Rückstoßantrieb

praktische Anwendung des 3. Newtonschen Axioms
(Weitergeleitet von Ausströmgeschwindigkeit)

Der Rückstoßantrieb oder Reaktionsantrieb ist eine praktische Anwendung des 3. Newtonschen Axioms. Der Rückstoßantrieb führt sein Antriebsmedium mit; Rückstoßantriebe, die auf Verbrennung beruhen, führen sowohl ihren Treibstoff als auch ihren Oxidator mit. Das angetriebene Objekt, zum Beispiel eine Rakete, wird durch den Rückstoß mit der gleichen Kraft nach vorn beschleunigt, mit der das Antriebsmedium nach hinten ausgestoßen wird.

Rückstoßprinzip einer Rakete

Im Weltraum ist der Rückstoßantrieb die einzige Möglichkeit, ein Raumschiff abseits von massereichen Himmelskörpern (Gravitation) und starken Strahlungsquellen (Strahlungsdruck) zu beschleunigen. Der Rückstoß kann durch Gase, Flüssigkeiten und Licht (in Form eines Photonenantriebs) erfolgen. Bei Licht ist dies möglich, da es bei Teilchenbetrachtung über Masse, Impuls und kinetische Energie verfügt.

Physikalischer Hintergrund

Bearbeiten

Entsprechend dem 3. Newtonschen Axiom (actio = reactio, auch „Reaktionsprinzip“ oder „Wechselwirkungsprinzip“) werden zwei Massen, die eine Kraft aufeinander ausüben, beschleunigt. Somit ergibt sich für beide Massen (nach Beendigung der Krafteinwirkung) eine Geschwindigkeit. Entsprechend der Definition für den Impuls

 

ergeben sich für diesen Fall folgende Relationen der Impulse zueinander:

 

(Hierbei stellt   zum Beispiel bei einer Rakete den Impuls der ausgestoßenen Verbrennungsprodukte dar, und   den dadurch entstehenden entgegengesetzten Impuls der Rakete)

Dabei ist zu berücksichtigen, dass zur Erzeugung dieser Impulse eine definierte Energie zur Verfügung stehen muss, welche die entsprechende Beschleunigungsarbeit verrichten kann. Hat eine Masse einen Impuls, verfügt sie über eine kinetische Energie.

Bei der Berechnung der anteiligen Energiemengen gilt:

 

Bei einem kontinuierlichen Prozess ergibt sich folgender, auch als Raketengrundgleichung bekannter, mathematischer Zusammenhang:

 

oder auch:

 

Wobei   gleich der Relativgeschwindigkeit der Stützmasse zur eigentlichen Nutzmasse ist. Hierbei ist zu berücksichtigen, dass bei Fortschreiten des Prozesses die Stützmasse kontinuierlich abnimmt und schlussendlich nur noch die Nutzmasse mit ihrer Endgeschwindigkeit   (relativ zum Startort) verbleibt.

Ein erstaunlicher Effekt stellt sich bei einem Verhältnis von   ein. Ab diesem Zeitpunkt bewegt sich die Rakete sowie die von ihr ausgeworfenen Stützmasse von einem am Startort der Rakete verbliebenen Beobachter in die gleiche Richtung weg, allerdings mit unterschiedlichen Geschwindigkeiten.

Rückstoßantriebe, die auf der Basis von Fluiden arbeiten

Bearbeiten

Ausströmgeschwindigkeit

Bearbeiten

In der Rückstoßkammer ist der Druck   höher als der Umgebungsdruck  . Das in der Kammer befindliche Medium tritt auf Grund dieser Druckdifferenz mit einer bestimmten Geschwindigkeit   aus der Düse aus. Von Bedeutung ist weiterhin die Dichte   des ausströmenden Mediums (innerhalb der Kammer, also unter dem Druck   stehend).

Aus der Energieerhaltung folgt:

 
 
 

Diese Gleichung gilt nur bei hinreichend kleinen Düsen, bei denen der Kammerinhalt relativ zur Kammer nur gering beschleunigt wird. Zudem wurden mögliche Reibungsverluste vernachlässigt.

Bei Gasen ist zu beachten, dass deren Dichte   abhängig vom Druck und der Temperatur ist. Diese lässt sich (näherungsweise) mittels der Thermischen Zustandsgleichung idealer Gase

 

durch Umstellung nach

 

berechnen.

Da bei Gasen die Dichte proportional zum Druck ist, kann eine Erhöhung der Austrittsgeschwindigkeit nur durch eine Temperaturerhöhung erzielt werden.

Durchsatz

Bearbeiten

Entsprechend dem Querschnitt   der Düse, der Dichte   des austretenden Mediums und dessen Austrittsgeschwindigkeit   lässt sich der oft auch als Massenstrom bezeichnete Durchsatz   ermitteln.

 

Die erzeugte Schubkraft   kann durch die Multiplikation des Durchsatzes   mit der Austrittsgeschwindigkeit   des Mediums berechnet werden.

 

Oder durch Ersetzen von  

 

und

 

erhält man die massenunabhängige Beziehung

 

Benötigte Triebwerksleistung

Bearbeiten

Hierbei ist nicht die Leistung   gemeint, mit der ein solches Triebwerk eine Masse bewegen (beschleunigen) würde, sondern die Leistung, die benötigt wird, um die entsprechende Schubkraft zu erzeugen. Man ermittelt diese Leistung   über den gegebenen Durchsatz  :

 

Um die Masse der ausströmenden Gase   auf die Geschwindigkeit   zu beschleunigen, muss die Arbeit

 

verrichtet werden. Somit ergibt sich die Triebwerksleistung   zu

 

bzw. wegen  :

 

Um bei einem hypothetischen Photonenantrieb die gleiche Schubkraft zu erzeugen, müsste die Triebwerksleistung erheblich höher liegen als bei einem herkömmlichen chemischen Raketenantrieb.

Nutzleistung

Bearbeiten

Die tatsächliche von einem solchen Rückstoßantrieb umsetzbare Leistung   ergibt sich durch Umstellung der Formel für die Beschleunigungsarbeit:

 
 

Dabei stellen   die Anfangsgeschwindigkeit und   die Endgeschwindigkeit des Beschleunigungsvorganges dar.

Anwendungen

Bearbeiten

Siehe auch

Bearbeiten
Bearbeiten
Commons: Rückstoßantrieb – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Rückstoßantrieb – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen