Benutzer:Dirk123456/Baustellenbaustelle 001/Baustelle-A/Baustelle-A.4

zweiter Anfang
Bearbeiten

Einleitung aus Zhao et al. (2015)[1] – Potenzial für direkten Interspezies-Elektronentransfer in einem elektrisch anaeroben System zur Steigerung der Methanproduktion aus der Schlammfaulung

Es wurde versucht, die dortigen Zitate mit dem „Citoiden“ (Benutzer:PerfektesChaos/js/citoidWikitext) umzuwandeln:

Im Textabschnitt waren 30 Zitate (ohne Wiederholungen) vorhanden. Diese Zitate wurden händisch, einzeln herausgesucht; d. h., es wurden die PMIDs oder DOIs in den Text geschrieben. Bei ca. 4 Zitaten waren anfangs manuelle Zuordnungsfehler vorhanden. Allerdings kamen Fehler hinzu, die durch die automatische Erkennung bedingt waren:

  • 28 Zitate: 7 x verdrehte Autorenliste, 4 x Webabruf statt Literaturzitat.

Die verdrehten Autorenlisten haben keine Verwechslung von Vor- und Nachnamen, enthalten, aber die Autorenreihenfolge invertiert; das trat bei DOI auf, nicht bei PMID.

Zitate aus PCM - Nummern 1. bis 30.
Bearbeiten
  1. Appels Lise et al. Anaerobic digestion in global bio-energy production: Potential and research challenges. Renew Sustain Energ Rev 15, 4295 (2011).
  2. Batstone D. J. & Virdis B. The role of anaerobic digestion in the emerging energy economy. Curr Opin Biotechnol 27, 142 (2014). [PubMed]
  3. Holm-Nielsen J. B., Al , Seadi T. & Oleskowicz-Popiel , P. The future of anaerobic digestion and biogas utilization. Bioresource Technol 100, 5478 (2009). [PubMed]
  4. Chen Ye, Cheng Jay J. & Creamer Kurt S. Inhibition of anaerobic digestion process: A review. Bioresource Technol 99, 4044 (2008). [PubMed]
  5. Sieber Jessica R., McInerney Michael J. & Gunsalus Robert P.Genomic Insights into Syntrophy: The Paradigm for Anaerobic Metabolic Cooperation. Annu Rev Microbiol 66, 429 (2012). [PubMed]
  6. Stams Alfons J. M. & Plugge Caroline M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7, 568 (2009). [PubMed]
  7. Rotaru Amelia-Elena et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energ Environ Sci 7, 408 (2013).
  8. Dolfing J. et al. Syntrophic Growth on Formate: a New Microbial Niche in Anoxic Environments. Appl Environ Microb 74, 6126 (2008). [PMC free article] [PubMed]
  9. Stams Alfons J. M. et al. Exocellular electron transfer in anaerobic microbial communities. Environ Microbiol 8, 371 (2006). [PubMed]
  10. Summers Z. M. et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330, 1413 (2010). [PubMed]
  11. Lovley D. R. et al. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159, 336 (1993). [PubMed]
  12. Caccavo F. Jr et al. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microb 60, 3752 (1994). [PMC free article][PubMed]
  13. Morita M. et al. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. MBio 2, e111 (2011). [PMC free article] [PubMed]
  14. Smith K. S. & Ingram-Smith C. Methanosaeta, the forgotten methanogen? Trends Microbiol 15, 150 (2007). [PubMed]
  15. Snoeyenbos-West O. L., Nevin K. P., Anderson R. T. & Lovley D. R. Enrichment of Geobacter Species in Response to Stimulation of Fe(III) Reduction in Sandy Aquifer Sediments. Microbial Ecol 39, 153 (2000). [PubMed]
  16. Zhang Tian et al. Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 12, 1011 (2010). [PubMed]
  17. Lovley D. R. et al. Geobacter: the microbe electric’s physiology, ecology, and practical applications. Adv Microb Physiol 59, 1 (2011). [PubMed]
  18. Lu L., Xing D. & Ren N. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge. Water Res 46, 2425 (2012). [PubMed]
  19. Sasaki D. et al. Operation of a cylindrical bioelectrochemical reactor containing carbon fiber fabric for efficient methane fermentation from thickened sewage sludge. Bioresource Technol129, 366 (2013). [PubMed]
  20. Yu Hongguang et al. Start-Up of an Anaerobic Dynamic Membrane Digester for Waste Activated Sludge Digestion: Temporal Variations in Microbial Communities. PLoS ONE 9, e93710 (2014). [PMC free article] [PubMed]
  21. Bird L. J., Bonnefoy V. & Newman D. K. Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol 19, 330 (2011). [PubMed]
  22. Nevin K. P. & Lovley D. R. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl Environ Microb66, 2248 (2000). [PMC free article] [PubMed]
  23. Weber Karrie A., Achenbach, Laurie A. & Coates, John D. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4, 752 (2006). [PubMed]
  24. Bond D. R. & Lovley D. R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microb 69, 1548 (2003). [PMC free article] [PubMed]
  25. Lovley Derek R. Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energ Environ Sci 4, 4896 (2011).
  26. Logan Bruce E. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7, 375 (2009). [PubMed]
  27. Logan Bruce E. & Regan John M. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14, 512 (2006). [PubMed]
  28. Jia Jianna et al. Electricity generation from food wastes and microbial community structure in microbial fuel cells. Bioresource Technol 144, 94 (2013). [PubMed]
  29. Marsili E. et al. Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms. Appl Environ Microb 74, 7329 (2008). [PMC free article][PubMed]
  30. Richter Hanno et al. Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energ Environ Sci 2, 506 (2009).


en de
Anaerobic methanogenesis is an effective way to realize energy recovery from wastes (/1 Appels et al. (2011 doi:10.1016/j.rser.2011.07.121\/;/2 Batstone & Virdis 2014 24534620\/;/3 Holm-Nielsen et al. (2009 doi:10.1016/j.biortech.2008.12.046\/). Die anaerobe Methanogenese ist ein effektiver Weg zur Energierückgewinnung aus Abfällen (/1 Webabruf Appels et al. (2011)[2]doi:10.1016/j.rser.2011.07.121 \/;/2 Batstone & Virdis 2014)[3]PMID 24534620 \/;/3 Webabruf Holm-Nielsen et al. (2009)[4]doi:10.1016/j.biortech.2008.12.046 \/){.}
Although this technology has been available for more than 60 years, it is not as widely utilized for solid waste conversion as might be expected. Obwohl diese Technologie seit mehr als 60 Jahren verfügbar ist, wird sie nicht so häufig für die Umwandlung fester Abfälle eingesetzt, wie dies zu erwarten wäre.
This is due, at least in part, to the widespread belief that anaerobic digestion is a slow process (/4 Chen et al. (2008 doi:10.1016/j.biortech.2007.01.057\/). Dies ist zumindest zum Teil auf die weit verbreitete Annahme zurückzuführen, dass anaerobe Vergärung ein langsamer Prozess ist (/4 Chen et al. (2008)[5]doi:10.1016/j.biortech.2007.01.057 \/){.}
For the last decades, the working model for syntrophs and methanogens exchange electrons is regarded as interspecies hydrogen transfer (IHT) (/5 Sieber et al. (2012 PMID 22803797\/;/6 Stams & Plugge (2009 PMID 19609258\/;/7 Rotaru et al. (2013 doi:10.1039/C3EE42189A\/). In den letzten Jahrzehnten wird der Elektronen-Austausch zwischen Syntrophen und Methanogenen, der Wasserstofftransfer zwischen den Spezies (IHT) als Arbeitsmodell angesehen (/5 Sieber et al. (2012)[6]PMID 22803797 \/6 Stams & Plugge (2009)[7] PMID 19609258/; /7 Autoren verkehrt rum! Rotaru et al. (2013)[8] doi:10.1039/C3EE42189A \/){.}
H2 is produced from non-methanogenic microorganisms metabolizing the fermentation products and consumed by H2-utilizing methanogens with the reduction of CO2 to CH4. H2 wird von nicht-methanogenen Mikroorganismen erzeugt, die die Fermentationsprodukte metabolisieren und von H2-verwertenden Methanogenen unter Reduktion von CO2 zu CH4 verbraucht.
This syntrophic metabolism of fermentation intermediates functions well as long as H2-utilizing methanogens maintain the concentration of H2 low enough that the production of H2 is thermodynamically favorable. Dieser syntrophische Metabolismus von Fermentationsintermediaten funktioniert gut, solange H2-nutzende Methanogene die H2-Konzentration so niedrig halten, dass die H2-Produktion thermodynamisch günstig ist.
Formate is an alternative to H2 and can also act as an electron carrier between syntrophic partners (/7/;/8 Dolfing et al. (2008 doi:10.1128/AEM.01428-08\/;/9 Stams et al. (2006 neu: PMID 16478444 (wrong doi:10. 1039/ C3EE42189A\/). Ameisensäure (Methansäure) ist eine Alternative zu H2 und kann auch als Elektronenträger zwischen syntrophischen Partnern wirken (/7/;/8 Autoren verkehrt rum! Dolfing et al. (2008)[9]doi:10.1128/AEM.01428-08 \/;/9 anderes Zitat, Autoren verkehrt rum! Stams et al. (2006)[10]doi:10.1039/C3EE42189A \/ neu: PMID 16478444){.}
The exchange of H2 between the syntrophs and methanogens is a weak link. Der Austausch von H2 zwischen den Syntrophen und Methanogenen ist eine schwache Verknüpfung.
Any slight disruption in the rate of H2consumption will break the balance of syntrophic metabolism, resulting in the accumulative short-chain fatty acids (SCFAs), which further inhibits the activity of H2-consuming methanogens to exacerbate the digester function. Jede geringfügige Beeinträchtigung der H2-Verbrauchsrate wird das Gleichgewicht des syntrophischen Metabolismus unterbrechen, was zu akkumulierbaren kurzkettigen Fettsäuren (SCFAs) führt, die die Aktivität von H2-konsumierenden Methanogenen weiter hemmen, um die Funktionen des Abbaus zu verschärfen{.}
Extracellular electrons are also exchanged via direct interspecies electron transfer (DIET), which is first documented in defined co-cultures of Geobacter metallireducens and Geobacter sulfurreducens (/10 Summers et al. (2010 PMID 21127257\/). Extrazelluläre Elektronen werden auch über Direct Interspecies Electron Transfer (DIET) ausgetauscht, der zuerst in definierten Co-Kulturen von Geobacter metallireducens und Geobacter sulfurreducens dokumentiert wurde (/10 Summers et al. (2010)[11]PMID 21127257 \/){.}
G. metallireducens can metabolize ethanol, but cannot use fumarate as an electron acceptor (/11 Lovley 1993 PMID 8387263\/), whereas G. sulfurreducens can reduce fumarate, but cannot metabolize ethanol (/12 Caccavo et al. 1994 PMID 7527204\/). G. metallireducens können Ethanol metabolisieren, Fumarat jedoch nicht als Elektronenakzeptor verwenden (/11 Lovley 1993)[12]PMID 8387263 \/), wohingegen G. sulfurreducens Fumarat reduzieren kann, Ethanol jedoch nicht metabolisieren kann (/12 Caccavo et al. 1994)[13]PMID 7527204 \/){.}
By DIET, G. metallireducens and G. sulfurreducens could grow in a medium with ethanol as the electron donor and fumarate as the electron acceptor. Mit DIET konnten G. metallireducens und G. sulfurreducens in einem Medium mit Ethanol als Elektronendonor und Fumarat als Elektronenakzeptor wachsen.
Morita et al. (/13 Morita et al. (2011 doi:10.1128/mBio.00159-11\/) reported that the potential for direct electron exchange between Geobacterspecies and Methanosaeta species could happen in the brewery wastewater digesters for methane production. Morita et al. (/13 Autoren verkehrt rum! Morita et al. (2011)[14]doi:10.1128/mBio.00159-11 \/) berichteten, dass die Möglichkeit eines direkten Elektronenaustauschs zwischen Geobacterspezies und Methanosaeta-Arten in den Abwasserfaulbehältern der Brauerei für die Methanproduktion auftreten kann.
Methanosaeta species accounted for about 90% of the methanogenic archaea 16S rRNA gene sequences recovered, and H2-utilizing methanogens only accounted for less than 0.6% of the methanogenic archaea 16S rRNA gene sequences recovered, which implied that IHT had only a little contribution to the whole methane production (/7/;/13/). Methanosaeta-Spezies machten etwa 90% der gewonnenen methanogenen Archaea-16S-rRNA-Gensequenzen aus, und H2-verwertende Methanogene machten nur weniger als 0,6% der gewonnenen methanogenen Archaea-16S-rRNA-Gensequenzen aus, was implizierte, dass IHT nur einen geringen Beitrag zur Genese hatte Gesamtmethanproduktion (/7/;/13/){.}
[14C]-bicarbonate analysis suggested that DIET between Geobacter species and Methanosaetae species contributed 1/3 of methane production (/7/). [14C]-Bicarbonat-Analyse deutete darauf hin, dass DIET zwischen Geobacter-Spezies und Methanosaetae-Spezies 1/3 der Methanproduktion beitrug (/7/){.}
This discovery that Geobacter species transferred electrons to Methanosaeta species via DIET has challenged the long-held assumption that H2 are the primary interspecies electron carrier in conversion of organic matter into methane. Diese Entdeckung, dass Geobacter-Spezies Elektronen über DIET auf Methanosaeta-Spezies übertragen haben, hat die lange gehegte Annahme in Frage gestellt, dass H2 der primäre Elektronenträger für die Interspezies bei der Umwandlung von organischem Material in Methan ist.
Commonly, Methanosaeta species are the predominant microbes in most of anaerobic methanogenic environments or anaerobic waste digesters, and the precursor of more than half of methane production (/14 Smith & Ingram-Smith 2007 doi:10.1016/j.tim.2007.02.002\/). In der Regel sind Methanosaeta-Arten die vorherrschenden Mikroben in den meisten anaeroben methanogenen Umgebungen oder anaeroben Abfallkochern und die Vorstufe von mehr als der Hälfte der Methanproduktion (/14 Webabruf Smith & Ingram-Smith 2007)[15]doi:10.1016/j.im.2007.02.002 \/){.}
However, Geobacter species are only frequently abundant in some limited anaerobic methanogenic environments, such as soils and sediments (/15 Snoeyenbos-West et al. (2000 doi:10.1007/s002480000\/;/16 Zhang et al. (2010 PMID 20105223\/;/17 Lovley et al. (2011 PMID 22114840\/). Geobacter-Arten sind jedoch nur in wenigen anaeroben methanogenen Umgebungen wie Böden und Sedimenten häufig reichlich vorhanden (/15 Snoeyenbos-West et al. (2000 !!! doi:10.1007/s002480000 \/; /Zhang et al. (2010)[16]PMID 20105223 \/; /17 Lovley et al. (2011)[17]PMID 22114840 \/){.}
For some important methanogenic environments, such as anaerobic digestion of municipal sludge or of saccharides, the relative abundance of Geobacter species detected are low (/18 Lu et al. (2012 PMID 22374298\/;/19 Sasaki et al. (2013 doi:10.1016/j.biortech.2012.11.048\/;/20 Yu et al. (2014 PMID 24695488\/). Für einige wichtige methanogene Umgebungen, wie z. B. den anaeroben Abbau von kommunalem Schlamm oder Sacchariden, ist die relative Häufigkeit der nachgewiesenen Geobacter-Arten gering (/18 Lu et al. (2012)[18]PMID 22374298 \/;/19 Sasaki et al. (2013 doi:10.1016/j.biortech. 2012.11.048 \/;/20 Yu et al. (2014)[19]PMID 24695488 \/){.}
It meant that DIET from Geobacter species to Methanosaet a species for methane production was weak in these anaerobic system. Es bedeutete, dass das DIET von der Geobacter-Spezies bis zur Methanosaet-Spezies für die Methanproduktion in diesem anaeroben System schwach war.
It was reported that Geobacter species usually adapt to grow with Fe (III) oxides (/21 Bird et al. (2011 PMID 21664821 \/;/22 Nevin et al. (2000 doi:10.1128/AEM.66.5.2248-2251.2000 \/;/23 Weber et al. (2006 PMID 16980937\/) or electrodes (/24 Bond & Lovley 2003 doi:10.1128/AEM.69.3.1548-1555.2003\/;/25 Lovley 2011 doi:10.1039/C1EE02229F\/) as electron acceptors. Es wurde berichtet, dass sich Geobacter-Arten normalerweise an das Wachstum mit Fe (III) -Oxiden anpassen (/21 Bird et al. (2011)[20]PMID 21664821 \//22 Autoren verkehrt rum! Nevin & Lovley (2000)[21]doi:10.1128/AEM.66.5.2248-2251.2000 \/23 Weber et al. (2006)[22]PMID 16980937 \/) oder Elektroden (/24 Bond & Lovley (2003)[23]doi:10.1128/AEM.69.3.1548-1555.2003 \/;/25 Lovley (2011)[24]doi:10.1039/C1EE02229F \/) als Elektronenakzeptoren{.}
This discovery revealed the reason why Geobacter species could be detected in most bioelectrochemical systems with over 30–40% of 16S rRNA gene sequences recovered in the anodic microbial communities (/26 Logan 2009 PMID 19330018\/;/27 Logan & Reagan 2006 PMID 17049240\/;/28 Jia et al. (2013 doi:10.1016/j.biortech.2013.06.072\/). Diese Entdeckung enthüllte den Grund, warum Geobacter-Spezies in den meisten bioelektrochemischen Systemen nachgewiesen werden konnte, wobei über 30–40% der 16S-rRNA-Gensequenzen in den anodischen mikrobiellen Gemeinschaften gefunden wurden (/26 Logan (2009)[25]PMID 19330018 \/; 27 Logan & Reagan (2006)[26]PMID 17049240 \/; 28 Webabruf Jia et al. (2013)[27]doi:10.1016/j.biortech.2013.06.072 \/).
This finding predicted that the additional bioelectrochemical system might create a favorable condition to support the growth of Geobacterspecies.(/24/;/29 Marsili et al. (2008 doi:10.1128/AEM.00177-08\/;/30 Richter et al. (2009 doi:10.1039/B816647A\/). Dieser Befund sagte voraus, dass das zusätzliche bioelektrochemische System eine günstige Voraussetzung für das Wachstum von Geobacteriespezies schaffen könnte (/ 24 /; / 29 Autoren verkehrt rum! Marsili et al. (2008)[28]doi:10.1128/AEM.00177-08\/; / 30 Autoren verkehrt rum! Richter et al. (2009)[29]doi:10.1039/B816647A\/).
We hereby assumed that a pair of electrodes inserted into an anaerobic digester was likely to enrich Geobacter species, which was expected to increase methane production via potential DIET between Geobacter species and Methanosaeta species. Wir sind davon ausgegangen, dass ein Elektrodenpaar, das in einen anaeroben Fermenter eingesetzt wird, wahrscheinlich Geobacter-Spezies anreichert, was vermutlich die Methanproduktion über potentielles DIET zwischen Geobacter-Spezies und Methanosaeta-Spezies erhöht.
In this study, a single-chamber bioelectrochemical system was operated to treat waste activated sludge (WAS) with the aim to clarify the potential DIET for methane production during sludge digestion. In dieser Studie wurde ein bioelektrochemisches Einkammer-System zur Behandlung von Abwasserschlamm (WAS) betrieben, um das potenzielle DIET für die Methanproduktion während des Schlammaufschlusses aufzuklären.
The WAS used as the substrate was because Geobacter species were rare in the waste activated sludge which provided the possibility to better observe the enrichment of Geobacter species and its effects on methane production via DIET. Das als Substrat verwendete WAS bestand darin, dass Geobacter-Spezies im Abfallaktivierungsschlamm selten waren, was die Möglichkeit bot, die Anreicherung von Geobacter-Spezies und ihre Auswirkungen auf die Methanproduktion mittels DIET besser zu beobachten.

x

x

de
/1 Webabruf Appels et al. (2011) [2] doi:10.1016/j.rser.2011.07.121 \ [30]

/2 Batstone & Virdis (2014) [3] PMID 24534620 \ [31]

/3 Webabruf Holm-Nielsen et al. (2009) [4] doi:10.1016/j.biortech.2008.12.046 \ [32]

/4 Chen et al. (2008) [5] doi:10.1016/j.biortech.2007.01.057 \ [33]
/5 Sieber et al. (2012) [6] PMID 22803797 \ [34]

/6 Stams & Plugge (2009) [7] PMID 19609258 \ [35]

/7 Autoren verkehrt rum! Rotaru et al. (2013) [8] doi:10.1039/C3EE42189A \ [36]

/8 Autoren verkehrt rum! Dolfing et al. (2008) [9] doi:10.1128/AEM.01428-08 \ [37]

/9 anderes Zitat, Autoren verkehrt rum! Stams et al. (2006) [10] PMID 16478444 \ [38]

/10 Summers et al. (2010) [11] PMID 21127257 \ [39]
/11 Lovley (1993) [12] PMID 8387263 \ [40]

/12 Caccavo et al. (1994) [13] PMID 7527204 \ [41]

/13 Autoren verkehrt rum! Morita et al. (2011) [14] doi:10.1128/mBio.00159-11 \ [42]
/14 Webabruf Smith & Ingram-Smith (2007) [15] doi:10.1016/j.im.2007.02.002 \ [43]
/15 Snoeyenbos-West et al. (2000 !!! doi:10.1007/s002480000 \ [44]

/16 Zhang et al. (2010) [16] PMID 20105223 \ [45]

/17 Lovley et al. (2011) [17] PMID 22114840 \ [46]

/18 Lu et al. (2012) [18] PMID 22374298 \ [47]

/19 Sasaki et al. (2013) doi:10.1016/j.biortech.2012.11.048 \ [48]

/20 Yu et al. (2014) [19]PMID 24695488 \ [49]

/21 Bird et al. (2011) [20] PMID 21664821 \ [50]

/22 Autoren verkehrt rum! Nevin & Lovley (2000) [21] doi:10.1128/AEM.66.5.2248-2251.2000 \ [51]

/23 Weber et al. (2006) [22]PMID 16980937 \ [52]

/24 Bond & Lovley (2003) [23] doi:10.1128/AEM.69.3.1548-1555.2003 \ [53]

/25 Lovley (2011) [24] doi:10.1039/C1EE02229F \ [54]

/26 Logan (2009) [25] PMID 19330018 \ [55]

/27 Logan & Reagan (2006) [26] PMID 17049240 \ [56]

/28 Webabruf Jia et al. (2013) [27] doi:10.1016/j.biortech.2013.06.072 \ [57]

/29 Autoren verkehrt rum! Marsili et al. (2008) [28] doi:10.1128/AEM.00177-08 \ [58]

/30 Autoren verkehrt rum! Richter et al. (2009) [29] doi:10.1039/B816647A \ [59]

x

Zusammengefasste Tabelle
Bearbeiten
de
/1 Appels et al. (2011) doi:10.1016/j.rser.2011.07.121 \ [30]

/2 Batstone & Virdis (2014) PMID 24534620 \ [31]

/3 Holm-Nielsen et al. (2009) doi:10.1016/j.biortech.2008.12.046 \ [32]

/4 Chen et al. (2008) doi:10.1016/j.biortech.2007.01.057 \ [33]
/5 Sieber et al. (2012) PMID 22803797 \ [34]

/6 Stams & Plugge (2009) PMID 19609258 \ [35]

/7 Rotaru et al. (2013) doi:10.1039/C3EE42189A \ [36]

/8 Dolfing et al. (2008) doi:10.1128/AEM.01428-08 \ [37]

/9 Stams et al. (2006) PMID 16478444 \ [38]

/10 Summers et al. (2010) PMID 21127257 \ [39]
/11 Lovley (1993) PMID 8387263 \ [40]

/12 Caccavo et al. (1994) PMID 7527204 \ [41]

/13 Morita et al. (2011) doi:10.1128/mBio.00159-11 \ [42]
/14 Smith & Ingram-Smith (2007) PMID 17320399 \ [60]
/15 Snoeyenbos-West et al. (2007) PMID 10833228 \ [61]

/16 Zhang et al. (2010) PMID 20105223 \ [45]

/17 Lovley et al. (2011) PMID 22114840 \ [46]

/18 Lu et al. (2012) PMID 22374298 \ [47]

/19 Sasaki et al. (2013) doi:10.1016/j.biortech.2012.11.048 \ [48]

/20 Yu et al. (2014) PMID 24695488 \ [49]

/21 Bird et al. (2011) PMID 21664821 \ [50]

/22 Nevin & Lovley (2000) doi:10.1128/AEM.66.5.2248-2251.2000 \ [51]

/23 Weber et al. (2006) PMID 16980937 \ [52]

/24 Bond & Lovley (2003) doi:10.1128/AEM.69.3.1548-1555.2003 \ [53]

/25 Lovley (2011) doi:10.1039/C1EE02229F \ [54]

/26 Logan (2009) PMID 19330018 \ [55]

/27 Logan & Reagan (2006) PMID 17049240 \ [56]

/28 Jia et al. (2013) doi:10.1016/j.biortech.2013.06.072 \ [57]

/29 Marsili et al. (2008) doi:10.1128/AEM.00177-08 \ [58]

/30 Richter et al. (2009) doi:10.1039/B816647A \ [59]

x

  1. Z. Zhao, Y. Zhang, L. Wang, X. Quan: Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion. In: Scientific Reports. Band 5, Juni 2015, S. 11094, doi:10.1038/srep11094, PMID 26057581, PMC 4650609 (freier Volltext).
  2. a b ScienceDirect. In: sciencedirect.com. Abgerufen am 19. Februar 2019.
  3. a b Damien John Batstone, Bernardino Virdis: The role of anaerobic digestion in the emerging energy economy. In: Current Opinion in Biotechnology. Band 27, 2014, ISSN 1879-0429, S. 142–149, doi:10.1016/j.copbio.2014.01.013, PMID 24534620.
  4. a b ScienceDirect. In: sciencedirect.com. Abgerufen am 19. Februar 2019.
  5. a b ScienceDirect. In: sciencedirect.com. Abgerufen am 19. Februar 2019.
  6. a b Jessica R. Sieber, Michael J. McInerney, Robert P. Gunsalus: Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. In: Annual Review of Microbiology. Band 66, 2012, ISSN 1545-3251, S. 429–452, doi:10.1146/annurev-micro-090110-102844, PMID 22803797.
  7. a b Alfons J. M. Stams, Caroline M. Plugge: Electron transfer in syntrophic communities of anaerobic bacteria and archaea. In: Nature Reviews. Microbiology. Band 7, Nr. 8, 2009, ISSN 1740-1534, S. 568–577, doi:10.1038/nrmicro2166, PMID 19609258.
  8. a b Derek R. Lovley, Kelly P. Nevin, Colin Wardman, Karsten Zengler, Mallory Embree, Devesh Shrestha, Minita Shrestha, Fanghua Liu, Pravin Malla Shrestha, Amelia-Elena Rotaru: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. In: Energy & Environmental Science. Band 7, Nr. 1, 2013, ISSN 1754-5706, S. 408–415, doi:10.1039/C3EE42189A (rsc.org).
  9. a b Caroline M. Plugge, Alfons J. M. Stams, Anne M. Henstra, Bo Jiang, Jan Dolfing: Syntrophic Growth on Formate: a New Microbial Niche in Anoxic Environments. In: Appl. Environ. Microbiol. Band 74, Nr. 19, 2008, ISSN 0099-2240, S. 6126–6131, doi:10.1128/AEM.01428-08, PMID 18708519 (asm.org).
  10. a b Derek R. Lovley, Kelly P. Nevin, Colin Wardman, Karsten Zengler, Mallory Embree, Devesh Shrestha, Minita Shrestha, Fanghua Liu, Pravin Malla Shrestha, Amelia-Elena Rotaru: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. In: Energy & Environmental Science. Band 7, Nr. 1, 2013, ISSN 1754-5706, S. 408–415, doi:10.1039/C3EE42189A (rsc.org).
  11. a b Zarath M. Summers, Heather E. Fogarty, Ching Leang, Ashley E. Franks, Nikhil S. Malvankar, Derek R. Lovley: Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. In: Science (New York, N.Y.). Band 330, Nr. 6009, 2010, ISSN 1095-9203, S. 1413–1415, doi:10.1126/science.1196526, PMID 21127257.
  12. a b D. R. Lovley, S. J. Giovannoni, D. C. White, J. E. Champine, E. J. Phillips, Y. A. Gorby, S. Goodwin: Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. In: Archives of Microbiology. Band 159, Nr. 4, 1993, ISSN 0302-8933, S. 336–344, PMID 8387263.
  13. a b F. Caccavo, D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz, M. J. McInerney: Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. In: Applied and Environmental Microbiology. Band 60, Nr. 10, 1994, ISSN 0099-2240, S. 3752–3759, PMID 7527204.
  14. a b Derek R. Lovley, Camelia Rotaru, Amelia E. Rotaru, Ludovic Giloteaux, Zarath M. Summers, Ashley E. Franks, Nikhil S. Malvankar, Masahiko Morita: Potential for Direct Interspecies Electron Transfer in Methanogenic Wastewater Digester Aggregates. In: mBio. Band 2, Nr. 4, 2011, ISSN 2150-7511, S. e00159–11, doi:10.1128/mBio.00159-11, PMID 21862629 (asm.org).
  15. a b ScienceDirect. In: sciencedirect.com. Abgerufen am 19. Februar 2019.
  16. a b Tian Zhang, Sarah M. Gannon, Kelly P. Nevin, Ashley E. Franks, Derek R. Lovley: Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. In: Environmental Microbiology. Band 12, Nr. 4, 2010, ISSN 1462-2920, S. 1011–1020, doi:10.1111/j.1462-2920.2009.02145.x, PMID 20105223.
  17. a b Derek R. Lovley, Toshiyuki Ueki, Tian Zhang, Nikhil S. Malvankar, Pravin M. Shrestha, Kelly A. Flanagan, Muktak Aklujkar, Jessica E. Butler, Ludovic Giloteaux, Amelia-Elena Rotaru, Dawn E. Holmes, Ashley E. Franks, Roberto Orellana, Carla Risso, Kelly P. Nevin: Geobacter: the microbe electric's physiology, ecology, and practical applications. In: Advances in Microbial Physiology. Band 59, 2011, ISSN 2162-5468, S. 1–100, doi:10.1016/B978-0-12-387661-4.00004-5, PMID 22114840.
  18. a b Lu Lu, Defeng Xing, Nanqi Ren: Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge. In: Water Research. Band 46, Nr. 7, 2012, ISSN 1879-2448, S. 2425–2434, doi:10.1016/j.watres.2012.02.005, PMID 22374298.
  19. a b Hongguang Yu, Qiaoying Wang, Zhiwei Wang, Erkan Sahinkaya, Yongli Li, Jinxing Ma, Zhichao Wu: Start-up of an anaerobic dynamic membrane digester for waste activated sludge digestion: temporal variations in microbial communities. In: PloS One. Band 9, Nr. 4, 2014, ISSN 1932-6203, S. e93710, doi:10.1371/journal.pone.0093710, PMID 24695488, PMC 3973557 (freier Volltext).
  20. a b Lina J. Bird, Violaine Bonnefoy, Dianne K. Newman: Bioenergetic challenges of microbial iron metabolisms. In: Trends in Microbiology. Band 19, Nr. 7, 2011, ISSN 1878-4380, S. 330–340, doi:10.1016/j.tim.2011.05.001, PMID 21664821.
  21. a b Derek R. Lovley, Kelly P. Nevin: Lack of Production of Electron-Shuttling Compounds or Solubilization of Fe(III) during Reduction of Insoluble Fe(III) Oxide by Geobacter metallireducens. In: Appl. Environ. Microbiol. Band 66, Nr. 5, 2000, ISSN 0099-2240, S. 2248–2251, doi:10.1128/AEM.66.5.2248-2251.2000, PMID 10788411 (asm.org).
  22. a b Karrie A. Weber, Laurie A. Achenbach, John D. Coates: Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. In: Nature Reviews. Microbiology. Band 4, Nr. 10, 2006, ISSN 1740-1534, S. 752–764, doi:10.1038/nrmicro1490, PMID 16980937.
  23. a b Derek R. Lovley, Daniel R. Bond: Electricity Production by Geobacter sulfurreducens Attached to Electrodes. In: Appl. Environ. Microbiol. Band 69, Nr. 3, 2003, ISSN 0099-2240, S. 1548–1555, doi:10.1128/AEM.69.3.1548-1555.2003, PMID 12620842 (asm.org).
  24. a b Derek R. Lovley: Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. In: Energy & Environmental Science. Band 4, Nr. 12, 2011, ISSN 1754-5706, S. 4896–4906, doi:10.1039/C1EE02229F (rsc.org).
  25. a b Bruce E. Logan: Exoelectrogenic bacteria that power microbial fuel cells. In: Nature Reviews. Microbiology. Band 7, Nr. 5, 2009, ISSN 1740-1534, S. 375–381, doi:10.1038/nrmicro2113, PMID 19330018.
  26. a b Bruce E. Logan, John M. Regan: Electricity-producing bacterial communities in microbial fuel cells. In: Trends in Microbiology. Band 14, Nr. 12, 2006, ISSN 0966-842X, S. 512–518, doi:10.1016/j.tim.2006.10.003, PMID 17049240.
  27. a b ScienceDirect. In: sciencedirect.com. Abgerufen am 19. Februar 2019.
  28. a b Daniel R. Bond, Raymond M. Hozalski, Daniel B. Baron, Janet B. Rollefson, Enrico Marsili: Microbial Biofilm Voltammetry: Direct Electrochemical Characterization of Catalytic Electrode-Attached Biofilms. In: Appl. Environ. Microbiol. Band 74, Nr. 23, 2008, ISSN 0099-2240, S. 7329–7337, doi:10.1128/AEM.00177-08, PMID 18849456 (asm.org).
  29. a b Leonard M. Tender, Derek R. Lovley, Daniel A. Lowy, Hongfei Jia, Kelly P. Nevin, Hanno Richter: Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. In: Energy & Environmental Science. Band 2, Nr. 5, 2009, ISSN 1754-5706, S. 506–516, doi:10.1039/B816647A (rsc.org).
  30. a b Lise Appels, Joost Lauwers, Jan Degrève, Lieve Helsen, Bart Lievens, Kris Willems, Jan Van Impe, Raf Dewil: Anaerobic digestion in global bio-energy production: Potential and research challenges. In: Renewable and Sustainable Energy Reviews. 15, 2011, S. 4295, doi:10.1016/j.rser.2011.07.121.
  31. a b D. J. Batstone, B. Virdis: The role of anaerobic digestion in the emerging energy economy. In: Current Opinion in Biotechnology. Band 27, Juni 2014, S. 142–149, doi:10.1016/j.copbio.2014.01.013, PMID 24534620 (Review).
  32. a b J.B. Holm-Nielsen, T. Al Seadi, P. Oleskowicz-Popiel: The future of anaerobic digestion and biogas utilization. In: Bioresource Technology. 100, 2009, S. 5478, doi:10.1016/j.biortech.2008.12.046.
  33. a b J.B. Holm-Nielsen, T. Al Seadi, P. Oleskowicz-Popiel: The future of anaerobic digestion and biogas utilization. In: Bioresource Technology. 100, 2009, S. 5478, doi:10.1016/j.biortech.2008.12.046.
  34. a b J. R. Sieber, M. J. McInerney, R. P. Gunsalus: Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. In: Annual review of microbiology. Band 66, 2012, S. 429–452, doi:10.1146/annurev-micro-090110-102844, PMID 22803797 (Review).
  35. a b A. J. Stams, C. M. Plugge: Electron transfer in syntrophic communities of anaerobic bacteria and archaea. In: Nature reviews. Microbiology. Band 7, Nummer 8, August 2009, S. 568–577, doi:10.1038/nrmicro2166, PMID 19609258 (Review).
  36. a b Amelia-Elena Rotaru, Pravin Malla Shrestha, Fanghua Liu, Minita Shrestha, Devesh Shrestha, Mallory Embree, Karsten Zengler, Colin Wardman, Kelly P. Nevin, Derek R. Lovley: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. In: Energy Environ. Sci.. 7, 2014, S. 408, doi:10.1039/C3EE42189A.
  37. a b J. Dolfing, B. Jiang, A. M. Henstra, A. J. M. Stams, C. M. Plugge: Syntrophic Growth on Formate: a New Microbial Niche in Anoxic Environments. In: Applied and Environmental Microbiology. 74, 2008, S. 6126, doi:10.1128/AEM.01428-08.
  38. a b A. J. Stams, F. A. de Bok, C. M. Plugge, M. H. van Eekert, J. Dolfing, G. Schraa: Exocellular electron transfer in anaerobic microbial communities. In: Environmental microbiology. Band 8, Nummer 3, März 2006, S. 371–382, doi:10.1111/j.1462-2920.2006.00989.x, PMID 16478444 (Review).
  39. a b Z. M. Summers, H. E. Fogarty, C. Leang, A. E. Franks, N. S. Malvankar, D. R. Lovley: Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. In: Science. Band 330, Nummer 6009, Dezember 2010, S. 1413–1415, doi:10.1126/science.1196526, PMID 21127257.
  40. a b D. R. Lovley, S. J. Giovannoni, D. C. White, J. E. Champine, E. J. Phillips, Y. A. Gorby, S. Goodwin: Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. In: Archives of microbiology. Band 159, Nummer 4, 1993, S. 336–344, PMID 8387263.
  41. a b F. Caccavo, D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz, M. J. McInerney: Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. In: Applied and Environmental Microbiology. Band 60, Nummer 10, Oktober 1994, S. 3752–3759, PMID 7527204, PMC 201883 (freier Volltext).
  42. a b Masahiko Morita, Nikhil S. Malvankar, Ashley E. Franks, Zarath M. Summers, Ludovic Giloteaux, Amelia E. Rotaru, Camelia Rotaru, Derek R. Lovley, Arturo Casadevall: Potential for Direct Interspecies Electron Transfer in Methanogenic Wastewater Digester Aggregates. In: mBio. 2, 2011, doi:10.1128/mBio.00159-11.
  43. Russell Haines, Lori N.K. Leonard: Situational influences on ethical decision-making in an IT context. In: Information & Management. 44, 2007, S. 313, doi:10.1016/j.im.2007.02.002.
  44. Russell Haines, Lori N.K. Leonard: Situational influences on ethical decision-making in an IT context. In: Information & Management. 44, 2007, S. 313, doi:10.1016/j.im.2007.02.002.
  45. a b T. Zhang, S. M. Gannon, K. P. Nevin, A. E. Franks, D. R. Lovley: Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. In: Environmental microbiology. Band 12, Nummer 4, April 2010, S. 1011–1020, doi:10.1111/j.1462-2920.2009.02145.x, PMID 20105223.
  46. a b D. R. Lovley, T. Ueki, T. Zhang, N. S. Malvankar, P. M. Shrestha, K. A. Flanagan, M. Aklujkar, J. E. Butler, L. Giloteaux, A. E. Rotaru, D. E. Holmes, A. E. Franks, R. Orellana, C. Risso, K. P. Nevin: Geobacter: the microbe electric's physiology, ecology, and practical applications. In: Advances in microbial physiology. Band 59, 2011, S. 1–100, doi:10.1016/B978-0-12-387661-4.00004-5, PMID 22114840 (Review).
  47. a b L. Lu, D. Xing, N. Ren: Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge. In: Water research. Band 46, Nummer 7, Mai 2012, S. 2425–2434, doi:10.1016/j.watres.2012.02.005, PMID 22374298.
  48. a b Daisuke Sasaki, Kengo Sasaki, Atsushi Watanabe, Masahiko Morita, Norio Matsumoto, Yasuo Igarashi, Naoya Ohmura: Operation of a cylindrical bioelectrochemical reactor containing carbon fiber fabric for efficient methane fermentation from thickened sewage sludge. In: Bioresource Technology. 129, 2013, S. 366, doi:10.1016/j.biortech.2012.11.048.
  49. a b H. Yu, Q. Wang, Z. Wang, E. Sahinkaya, Y. Li, J. Ma, Z. Wu: Start-up of an anaerobic dynamic membrane digester for waste activated sludge digestion: temporal variations in microbial communities. In: PLOS ONE. Band 9, Nummer 4, 2014, S. e93710, doi:10.1371/journal.pone.0093710, PMID 24695488, PMC 3973557 (freier Volltext).
  50. a b L. J. Bird, V. Bonnefoy, D. K. Newman: Bioenergetic challenges of microbial iron metabolisms. In: Trends in Microbiology. Band 19, Nummer 7, Juli 2011, S. 330–340, doi:10.1016/j.tim.2011.05.001, PMID 21664821 (Review).
  51. a b L. J. Bird, V. Bonnefoy, D. K. Newman: Bioenergetic challenges of microbial iron metabolisms. In: Trends in Microbiology. Band 19, Nummer 7, Juli 2011, S. 330–340, doi:10.1016/j.tim.2011.05.001, PMID 21664821 (Review).
  52. a b K. A. Weber, L. A. Achenbach, J. D. Coates: Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. In: Nature reviews. Microbiology. Band 4, Nummer 10, Oktober 2006, S. 752–764, doi:10.1038/nrmicro1490, PMID 16980937 (Review).
  53. a b D. R. Bond, D. R. Lovley: Electricity Production by Geobacter sulfurreducens Attached to Electrodes. In: Applied and Environmental Microbiology. 69, 2003, S. 1548, doi:10.1128/AEM.69.3.1548-1555.2003.
  54. a b Derek R. Lovley: Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. In: Energy & Environmental Science. 4, 2011, S. 4896, doi:10.1039/C1EE02229F.
  55. a b B. E. Logan: Exoelectrogenic bacteria that power microbial fuel cells. In: Nature reviews. Microbiology. Band 7, Nummer 5, Mai 2009, S. 375–381, doi:10.1038/nrmicro2113, PMID 19330018 (Review).
  56. a b B. E. Logan, J. M. Regan: Electricity-producing bacterial communities in microbial fuel cells. In: Trends in Microbiology. Band 14, Nummer 12, Dezember 2006, S. 512–518, doi:10.1016/j.tim.2006.10.003, PMID 17049240 (Review).
  57. a b Jianna Jia, Y. u. Tang, Bingfeng Liu, D. i. Wu, Nanqi Ren, Defeng Xing: Electricity generation from food wastes and microbial community structure in microbial fuel cells. In: Bioresource Technology. 144, 2013, S. 94, doi:10.1016/j.biortech.2013.06.072.
  58. a b E. Marsili, J. B. Rollefson, D. B. Baron, R. M. Hozalski, D. R. Bond: Microbial Biofilm Voltammetry: Direct Electrochemical Characterization of Catalytic Electrode-Attached Biofilms. In: Applied and Environmental Microbiology. 74, 2008, S. 7329, doi:10.1128/AEM.00177-08.
  59. a b Hanno Richter, Kelly P. Nevin, Hongfei Jia, Daniel A. Lowy, Derek R. Lovley, Leonard M. Tender: Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. In: Energy & Environmental Science. 2, 2009, S. 506, doi:10.1039/B816647A.
  60. K. S. Smith, C. Ingram-Smith: Methanosaeta, the forgotten methanogen? In: Trends in Microbiology. Band 15, Nummer 4, April 2007, S. 150–155, doi:10.1016/j.tim.2007.02.002, PMID 17320399 (Review).
  61. O. L. Snoeyenbos-West, K. P. Nevin, R. T. Anderson, D. R. Lovley: Enrichment of Geobacter Species in Response to Stimulation of Fe(III) Reduction in Sandy Aquifer Sediments. In: Microbial ecology. Band 39, Nummer 2, Februar 2000, S. 153–167, PMID 10833228.