Heavy Metal Chemist
Babel: | ||
---|---|---|
| ||
| ||
| ||
| ||
| ||
| ||
| ||
| ||
| ||
Benutzer nach Sprache |
Festkörperchemie
BearbeitenDie Festkörperchemie ist ein Teilgebiet der Chemie, das sich mit der Darstellung, der Struktur, den Eigenschaften und den Anwendungen von Stoffen im festen Aggregatzustand (Festkörper) beschäftigt.
Zumeist handelt es sich bei den Festkörpern um anorganische Verbindungen. Viele Festkörper liegen in kristalliner Form vor, die durch die periodische dreidimensionale Anordnung kleinerer Bausteine (Atome, Ionen, Moleküle) gekennzeichnet ist. Jedoch sind auch amorphe Festkörper, wie zum Beispiel Gläser, Gegenstand der Festkörperchemie. Typische Beispiele für anorganische Festkörper umfassen Mineralien, Salze, Metalle sowie Legierungen.
Die Aufklärung der mikroskopischen Struktur und deren Zusammenhang mit makroskopischen Eigenschaften stellt eine wichtige Aufgabe der Festkörperchemie dar. Eine scharfe Abgrenzung der Festkörperchemie von der Festkörperphysik und der Werkstoffwissenschaft sowie der Mineralogie, der Metallurgie und der Kristallographie ist nicht ohne weiteres möglich.
Historisches
BearbeitenDie Untersuchung von festen Stoffen war im Rahmen der Metallgewinnung schon im Altertum von großem Interesse. Im Verlauf der Entwicklung chemischer Kenntnisse wuchs auch das Interesse an der Struktur und den Eigenschaften fester Phasen. Da viele Festkörper für eine kommerzielle Anwendung in Frage kommen, ist die Entwicklung der Festkörperchemie durch die Technologie geprägt. Fortschritte auf diesem Gebiet stammen zu einem überdurchschnittlich großen Teil aus Anregungen aus der Industrie, die für verschiedene Anwendungen unterschiedlich spezialisierte Stoffe benötigt.
Als "Vater der Festkörperchemie" wird gerne Carl Wagner bezeichnet, der im 20. Jahrhundert wichtige Beiträge zum Thema Korrosion beitrug und eine Theorie bezüglich der Diffusion von Ionen in Festkörpern schuf. Durch die Entdeckung der Röntgenbeugung an kristallinen Stoffen durch William Lawrence Bragg ist der Blick in das Innere von Kristallen möglich geworden, mit deren Hilfe die Struktur vieler Festkörper aufgeklärt werden konnte.
Untersuchungsobjekte in der Festkörperchemie
BearbeitenWesentlicher Untersuchungsgegenstand in der Festkörperchemie ist der Festkörper mit Translationssymmetrie, also der Kristall. Auch andere Festkörper, wie Gläser und Quasikristalle, können festkörperchemisch untersucht werden.
Methoden der Festkörperchemie
BearbeitenSynthesemethoden
BearbeitenFest-Fest-Reaktionen
BearbeitenBei Reaktionen zwischen zwei festen Phasen spielt die Diffusion von Ionen im Festkörper die entscheidende Rolle.
Reaktionen in der Schmelze
BearbeitenReaktionen in bzw. mit der Gasphase
BearbeitenChemical Vapour Deposition, CVD
BearbeitenMikrowelleninduzierte Reaktionen
BearbeitenAnalytische Methoden
BearbeitenStrukturanalytik
BearbeitenRöntgenbeugungsverfahren
BearbeitenEinkristalldiffraktometrie
BearbeitenPulverdiffraktometrie
BearbeitenBeugungsverfahren mit anderen Sonden
BearbeitenNeutronen
BearbeitenElektronen
BearbeitenSpektroskopische Methoden
BearbeitenPhyskalische Messungen
BearbeitenAnwendungen
BearbeitenPersonen, Verbände, Tagungen
BearbeitenLiteratur
Bearbeiten- Einführung in die Festkörperchemie, von Lesley Smart und Elaine Moore, 344 Seiten, Springer, Berlin; ISBN 3-540-67066-1.
- Festkörper – Fehler und Funktion: Prinzipien der Physikalischen Festkörperchemie, von Joachim Maier, 528 Seiten, Teubner Verlag; ISBN 3-519-03540-5.
- Solid State Chemistry and its Applications, von Anthony R. West, 584 Seiten, Wiley; ISBN 1-119-94294-8.
- Anorganische Strukturchemie, von Ulrich Müller, 396 Seiten, Vieweg + Teubner Verlag; ISBN 3-834-80626-9.
- Symmetriebeziehungen zwischen verwandten Kristallstrukturen: Anwendungen der kristallographischen Gruppentheorie in der Kristallchemie, von Ulrich Müller, 368 Seiten, Vieweg + Teubner Verlag; ISBN 3-834-81799-6.
Weblinks
Bearbeiten- Das Bändermodell von Festkörperkristallen, bei Universität Stuttgart, Institut für Zeitmeßtechnik, Fein- und Mikrotechnik ( vom 9. Juni 2007 im Internet Archive)
{ {Navigationsleiste Teilbereiche der Chemie} }
{ {Normdaten|TYP=s|GND=4129288-1} }
{ {SORTIERUNG:Festkorperchemie} } [ [Kategorie:Teilgebiet der Chemie] ] [ [Kategorie:Festkörperchemie| ] ]
Solid-state chemistry, also sometimes referred to as materials chemistry, is the study of the synthesis, structure, and properties of solid phase materials, particularly, but not necessarily exclusively of, non-molecular solids. It therefore has a strong overlap with solid-state physics, mineralogy, crystallography, ceramics, metallurgy, thermodynamics, materials science and electronics with a focus on the synthesis of novel materials and their characterization.
History
BearbeitenBecause of its direct relevance to products of commerce, solid state inorganic chemistry has been strongly driven by technology. Progress in the field has often been fueled by the demands of industry, well ahead of purely academic curiosity. Applications discovered in the 20th century include zeolite and platinum-based catalysts for petroleum processing in the 1950s, high-purity silicon as a core component of microelectronic devices in the 1960s, and “high temperature” superconductivity in the 1980s. The invention of X-ray crystallography in the early 1900s by William Lawrence Bragg enabled further innovation. Our understanding of how reactions proceed at the atomic level in the solid state was advanced considerably by Carl Wagner's work on oxidation rate theory, counter diffusion of ions, and defect chemistry. Because of this, he has sometimes been referred to as the father of solid state chemistry.[1]
Synthetic methods
BearbeitenGiven the diversity of solid state compounds, an equally diverse array of methods[2] are used for their preparation. For organic materials, such as charge transfer salts, the methods operate near room temperature and are often similar to the techniques of organic synthesis. Redox reactions are sometimes conducted by electrocrystallisation, as illustrated by the preparation of the Bechgaard salts from tetrathiafulvalene.
Oven techniques
BearbeitenFor thermally robust materials, high temperature methods are often employed. For example, bulk solids are prepared using tube furnaces, which allow reactions to be conducted up to ca. 1100 °C. Special equipment e.g. ovens consisting of a tantalum tube through which an electric current is passed can be used for even higher temperatures up to 2000 °C. Such high temperatures are at times required to induce diffusion of the reactants, but this depends strongly on the system studied. Some solid state reactions already proceed at temperatures as low as 100 °C.
Melt methods
BearbeitenOne method often employed is to melt the reactants together and then later anneal the solidified melt. If volatile reactants are involved the reactants are often put in an ampoule that is evacuated -often while keeping the reactant mixture cold e.g. by keeping the bottom of the ampoule in liquid nitrogen- and then sealed. The sealed ampoule is then put in an oven and given a certain heat treatment.
Solution methods
BearbeitenIt is possible to use solvents to prepare solids by precipitation or by evaporation. At times the solvent is used hydrothermally, i.e. under pressure at temperatures higher than the normal boiling point. A variation on this theme is the use of flux methods, where a salt of relatively low melting point is added to the mixture to act as a high temperature solvent in which the desired reaction can take place.
Gas reactions
BearbeitenMany solids react vigorously with reactive gas species like chlorine, iodine, oxygen etc. Others form adducts with other gases, e.g. CO or ethylene. Such reactions are often carried out in a tube that is open ended on both sides and through which the gas is passed. A variation of this is to let the reaction take place inside a measuring device such as a TGA. In that case stoichiometric information can be obtained during the reaction, which helps identify the products.
A special case of a gas reaction is a chemical transport reaction. These are often carried out in a sealed ampoule to which a small amount of a transport agent, e.g. iodine is added. The ampoule is then placed in a zone oven. This is essentially two tube ovens attached to each other which allows a temperature gradient to be imposed. Such a method can be used to obtain the product in the form of single crystals suitable for structure determination by X-ray diffraction.
Chemical vapour deposition is a high temperature method that is widely employed for the preparation of coatings and semiconductors from molecular precursors.
Air and moisture sensitive materials
BearbeitenMany solids are hygroscopic and/or oxygen sensitive. Many halides e.g. are very 'thirsty' and can only be studied in their anhydrous form if they are handled in a glove box filled with dry (and/or oxygen-free) gas, usually nitrogen.
Characterization
BearbeitenNew phases, phase diagrams, structures
BearbeitenThe synthetic methodology and the characterization of the product often go hand in hand in the sense that not one but a series of reaction mixtures are prepared and subjected to heat treatment. The stoichiometry is typically varied in a systematic way to find which stoichiometries will lead to new solid compounds or to solid solutions between known ones. A prime method to characterize the reaction products is powder diffraction, because many solid state reactions will produce polycristalline ingots or powders. Powder diffraction will facilitate the identification of known phases in the mixture. If a pattern is found that is not known in the diffraction data libraries an attempt can be made to index the pattern, i.e. to identify the symmetry and the size of the unit cell. (If the product is not crystalline the characterization is typically much more difficult.)
Once the unit cell of a new phase is known, the next step is to establish the stoichiometry of the phase. This can be done in a number of ways. Sometimes the composition of the original mixture will give a clue, if one finds only one product -a single powder pattern- or if one was trying to make a phase of a certain composition by analogy to known materials but this is rare. Often considerable effort in refining the synthetic methodology is required to obtain a pure sample of the new material. If it is possible to separate the product from the rest of the reaction mixture elemental analysis can be used. Another way involves SEM and the generation of characteristic X-rays in the electron beam. The easiest way to solve the structure is by using single crystal X-ray diffraction.
The latter often requires revisiting and refining the preparative procedures and that is linked to the question which phases are stable at what composition and what stoichiometry. In other words, what does the phase diagram looks like.[3] An important tool in establishing this is thermal analysis techniques like DSC or DTA and increasingly also, thanks to the advent of synchrotrons temperature-dependent powder diffraction. Increased knowledge of the phase relations often leads to further refinement in synthetic procedures in an iterative way. New phases are thus characterized by their melting points and their stoichiometric domains. The latter is important for the many solids that are non-stoichiometric compounds. The cell parameters obtained from XRD are particularly helpful to characterize the homogeneity ranges of the latter.
Further characterization
BearbeitenIn many -but certainly not all- cases new solid compounds are further characterized[4] by a variety of techniques that straddle the fine line that (hardly) separates solid-state chemistry from solid-state physics.
Optical properties
BearbeitenFor non-metallic materials it is often possible to obtain UV/VIS spectra. In the case of semiconductors that will give an idea of the band gap.
Bibliography
Bearbeiten- ↑ For a historical perspective, cf. Pierre Teissier, L’émergence de la chimie du solide en France (1950-2000). De la formation d’une communauté à sa dispersion (Paris X: Ph.D. dissertation, 2007, 651 p.). Electronic version available: http://bdr.u-paris10.fr/sid/
- ↑ Chapter 2 of Solid state chemistry and its applications. Anthony R. West. John Wiley & Sons 2003 ISBN 981-253-003-7
- ↑ cf. Chapter 12 of Elements of X-ray diffraction, B.D. Cullity, Addison-Wesley, 2nd ed. 1977 ISBN 0-201-01174-3
- ↑ cf. Chapter 2 of New directions in Solid State Chemistry. C. N. R. Rao and J. Gopalakrishnan. Cambridge U. Press 1997 ISBN 0-521-49559-8
External links
Bearbeiten- KS electromech company which manufactures solid state high frequency induction welder.
- [1], Sadoway, Donald. 3.091SC; Introduction to Solid State Chemistry, Fall 2010. (Massachusetts Institute of Technology: MIT OpenCourseWare)