Als Obstgarten-Problem (englisch orchard problem) wird in der Mathematik die folgende Fragestellung bezeichnet: Wie können neun Obstbäume so angeordnet werden, dass sich zehn Sichtachsen mit jeweils drei Bäumen ergeben? Das allgemeinere Problem, wie Punkte in der Ebene so angeordnet werden können, dass möglichst viele Geraden mit jeweils Punkten darauf existieren, beschäftigt Mathematiker bis heute.
Obstgarten-Folge
BearbeitenSei die maximale Anzahl von Geraden mit drei Punkten, die in einer Konfiguration von Punkten in der Ebene existieren können. Die ersten Glieder dieser Folge sind:
n | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 4 | 6 | 7 | 10 | 12 | 16 | 19 | 22 | 26 |
Upper and lower bounds
BearbeitenSince no two lines may share two distinct points, a trivial upper-bound for the number of 3-point lines determined by n points is
Using the fact that the number of 2-point lines is at least 6n/13 Vorlage:Harv, this upper bound can be lowered to
Lower bounds for t3orchard(n) are given by constructions for sets of points with many 3-point lines. The earliest quadratic lower bound of ~(1/8)n2 was given by Sylvester, who placed n points on the cubic curve y = x3. This was improved to [(1/6)n2 − (1/2)n] + 1 in 1974 by Vorlage:Harvs, using a construction based on Weierstrass's elliptic functions. An elementary construction using hypocycloids was found by Vorlage:Harvtxt achieving the same lower bound.
In September 2013, Ben Green and Terence Tao published a paper in which they prove that for all point sets of sufficient size, n > n0, there are at most ([n(n - 3)/6] + 1) = [(1/6)n2 − (1/2)n + 1] 3-point lines which matches the lower bound established by Burr, Grünbaum and Sloane.[1] Thus, for sufficiently large n, the exact value of t3orchard(n) is known.
This is slightly better than the bound that would directly follow from their tight lower bound of n/2 for the number of 2-point lines: [n(n − 2)/6], proved in the same paper and solving a 1951 problem posed independently by Gabriel Andrew Dirac and Theodore Motzkin
Orchard-planting problem has also been considered over finite fields. In this version of the problem, the n points lie in a projective plane defined over a finite field.Vorlage:Harv.