a 0 , . . . , a n − 1 {\displaystyle \ a_{0},...,a_{n-1}}
φ {\displaystyle \ \varphi }
M a t h e m a t i s c h e S t r u k t u r M ⊨ A u s s a g e φ i n e l e m e n t a r e r S p r a c h e {\displaystyle Mathematische\ Struktur\ M\models Aussage\ \varphi \ in\ elementarer\ Sprache}
[ − 1 2 − 1 ] [ 1 2 1 ] = [ − 1 − 2 − 1 2 4 2 − 1 − 2 − 1 ] {\displaystyle {\begin{bmatrix}-1\\2\\-1\end{bmatrix}}{\begin{bmatrix}1&2&1\end{bmatrix}}={\begin{bmatrix}-1&-2&-1\\2&4&2\\-1&-2&-1\end{bmatrix}}}
d e r i v e d _ s i z e = c l a m p ( s i z e ∗ ( 1 a + b ∗ d + c ∗ d 2 ) ) {\displaystyle derived\_size=clamp\left(size*{\sqrt {\left({\frac {1}{a+b*d+c*d^{2}}}\right)}}\right)}
w i d t h = { d e r i v e d _ s i z e d e r i v e d _ s i z e ≥ t h r e s h o l d t h r e s h o l d s o n s t {\displaystyle width={\begin{cases}derived\_size&derived\_size\geq threshold\\threshold&sonst\end{cases}}}
f a d e = { 1 d e r i v e d _ s i z e ≥ t h r e s h o l d ( d e r i v e d _ s i z e t h r e s h o l d ) 2 s o n s t {\displaystyle fade={\begin{cases}1&derived\_size\geq threshold\\\left({\frac {derived\_size}{threshold}}\right)^{2}&sonst\end{cases}}}
z w = { n , z ≤ 0 f , z ≥ 1 n + z ∗ ( f − n ) s o n s t {\displaystyle z_{w}={\begin{cases}n,&z\leq 0\\f,&z\geq 1\\n+z*(f-n)&sonst\end{cases}}}
n = m i n { 32 , ⌈ l o g 2 ( m a x V i e w p o r t W i d t h ∗ m a x V i e w p o r t H e i g h t ∗ 2 ) ⌉ } {\displaystyle n=min\{32,\lceil log_{2}(maxViewportWidth*maxViewportHeight*2)\rceil \}}
c l = { c s 12.92 f a l l s c s ≤ 0.04045 ( c s + 0.055 1.055 ) 2.4 f a l l s c s > 0.04045 {\displaystyle c_{l}={\begin{cases}{\frac {c_{s}}{12.92}}&falls\ c_{s}\leq 0.04045\\\\({\frac {c_{s}+0.055}{1.055}})^{2.4}&falls\ c_{s}>0.04045\end{cases}}}
r e s u l t = { 1.0 r ≤ D t 0.0 r > D t {\displaystyle result={\begin{cases}1.0&r\leq D_{t}\\0.0&r>D_{t}\end{cases}}}
r e s u l t = { 1.0 r ≥ D t 0.0 r < D t {\displaystyle result={\begin{cases}1.0&r\geq D_{t}\\0.0&r<D_{t}\end{cases}}}
r e s u l t = { 1.0 r < D t 0.0 r ≥ D t {\displaystyle result={\begin{cases}1.0&r<D_{t}\\0.0&r\geq D_{t}\end{cases}}}
r e s u l t = { 1.0 r > D t 0.0 r ≤ D t {\displaystyle result={\begin{cases}1.0&r>D_{t}\\0.0&r\leq D_{t}\end{cases}}}
r e s u l t = { 1.0 r = D t 0.0 r ≠ D t {\displaystyle result={\begin{cases}1.0&r=D_{t}\\0.0&r\neq D_{t}\end{cases}}}
r e s u l t = { 1.0 r ≠ D t 0.0 r = D t {\displaystyle result={\begin{cases}1.0&r\neq D_{t}\\0.0&r=D_{t}\end{cases}}}
r e s u l t = 1.0 {\displaystyle result=\ 1.0}
r e s u l t = 0.0 {\displaystyle result=\ 0.0}
[ − 1 2 N , 1 + 1 2 N ] {\displaystyle \left[{\tfrac {-1}{2N}},1+{\tfrac {1}{2N}}\right]}
[ − 1 2 N , 1 − 1 2 N ] {\displaystyle \left[{\tfrac {-1}{2N}},1-{\tfrac {1}{2N}}\right]}
Auf den Diskussionsseiten wird diskutiert, wie man Wikipedia-Inhalte verbessern kann. Starte eine neue Diskussion, um dich mit Dj3hut1 in Verbindung zu setzen und zusammenzuarbeiten. Diskussionsseiten sind öffentlich und für alle einsehbar.