Carré-Du-Champ-Operator

bilinearer, symmetrischer Operator aus der Analysis und der Stochastik

Der Carré-Du-Champ-Operator (wörtlich Quadrat-des-Feldes-Operator) ist ein bilinearer, symmetrischer Operator aus der Analysis und der Stochastik. Der Carré-Du-Champ-Operator misst, wie weit ein Operator davon entfernt ist, eine Derivation zu sein.[1]

Der Operator wurde erstmals 1969 von Hiroshi Kunita[2] beschrieben und 1976 unabhängig von Jean-Pierre Roth[3] in seiner Doktorarbeit wiederentdeckt.

Der Name "carré du champ" (Quadrat des (Vektor-)feldes) stammt aus der Elektrostatik.

Carré-Du-Champ-Operator einer Markow-Halbgruppe

Bearbeiten

Gegeben sei ein σ-endlicher Maßraum   und eine Markow-Halbgruppe   von nicht-negativen Operatoren auf  .

Weiter sei   der infinitesimale Generator von   und   eine Algebra der Funktionen in der Domäne  , das bedeutet ein Vektorraum der geschlossen unter Multiplikation ist. Es gilt also, wenn  , dann auch  .

Carré-Du-Champ-Operator

Bearbeiten

Der Carré-Du-Champ-Operator der markowschen Halbgruppe   ist der Operator   definiert (nach P. A. Meyer) durch

 

für alle  .[4][5]

Erläuterungen

Bearbeiten

Aus der Definition folgt[1]

 

Positivität

Bearbeiten

Für   folgt aus   somit   und

 

Domäne der Markow-Halbgruppe

Bearbeiten

Die Domäne ist definiert als

 

Carré-Du-Champ-Operator nach Roth

Bearbeiten

Sei   ein lokalkompakter Raum und   ein linearer Operator mit Domäne   darauf.

Positives Maximumprinzip

Bearbeiten

  erfüllt das positive Maximumprinzip, wenn für alle   und   mit

 

gilt, dass

 [6]

Carré-Du-Champ-Operator

Bearbeiten

Sei   nun ein Operator, der das positive Maximumprinzip erfüllt und dessen Domäne   dicht in   liegt. Außerdem sei   stabil gegenüber der Multiplikation, d. h.

 

Dann ist der Carré-Du-Champ-Operator  , der symmetrische bilineare Operator definiert durch

 [7][8]

Literatur

Bearbeiten
  • Paul-André Meyer: Séminaire de Probabilités X Université de Strasbourg. In: Springer (Hrsg.): Lecture Notes in Mathematics, Meyer, P.A. (eds). Band 511. Berlin, Heidelberg 1976, L'operateur carré du champ, S. 142–161, doi:10.1007/BFb0101102 (französisch).
  • Michel Ledoux: The geometry of Markov diffusion generators. In: Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6. Band 9, Nr. 2, 2000, S. 305–366 (numdam.org).

Einzelnachweise

Bearbeiten
  1. a b Michel Ledoux: The geometry of Markov diffusion generators. In: Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6. Band 9, Nr. 2, 2000, S. 312 (numdam.org).
  2. Hiroshi Kunita: Absolute continuity of Markov processes and generators. In: Nagoya Mathematical Journal (Hrsg.): Nagoya Mathematical Journal. Band 36, 1969, S. 1–26 (projecteuclid.org).
  3. Jean-Pierre Roth: Opérateurs dissipatifs et semi-groupes dans les espaces de fonctions continues. In: Annales de l'institut Fourier. Band 26, Nr. 4, 1976, S. 1–97 (numdam.org – Doktorarbeit).
  4. Michel Ledoux: The geometry of Markov diffusion generators. In: Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6. Band 9, Nr. 2, 2000, S. 305–366 (numdam.org).
  5. Paul-André Meyer: Séminaire de Probabilités X Université de Strasbourg. In: Springer (Hrsg.): Lecture Notes in Mathematics, Meyer, P.A. (eds). Band 511. Berlin, Heidelberg 1976, L'operateur carré du champ, S. 142–161, doi:10.1007/BFb0101102 (französisch).
  6. Francis Hirsch: Opérateurs carré du champ. In: Séminaire Bourbaki. Band 1976/77, Nr. 18, 1978, S. 168 (numdam.org).
  7. Jean-Pierre Roth: Opérateurs dissipatifs et semi-groupes dans les espaces de fonctions continues. In: Annales de l'institut Fourier. Band 26, Nr. 4, 1976, S. 36–37 (französisch, numdam.org – Doktorarbeit).
  8. Francis Hirsch: Opérateurs carré du champ. In: Séminaire Bourbaki. Band 1976/77, Nr. 18, 1978, S. 171 (französisch, numdam.org).