Chordaler Graph

Graphenklasse in der Graphentheorie, einem Teilgebiet der Mathematik

In der Graphentheorie nennt man einen Graphen chordal oder trianguliert, genau dann wenn er einer der folgenden äquivalenten Bedingungen genügt:

  • Jeder induzierte Kreis ist ein Dreieck. Ein Kreis ist dabei induziert, genau dann wenn zwischen seinen Knoten keine weiteren Kanten im Ursprungsgraphen existieren.
  • Jeder minimale a-b-Trenner zu zwei Ecken a und b ist eine Clique.
  • Jeder induzierte Teilgraph enthält eine simpliziale Ecke (Rose, 1970), also eine Ecke, deren Nachbarn eine Clique bilden.
  • G ist Schnittgraph einer Menge von Teilbäumen eines Baums (Gavril, 1974).

Eigenschaften

Bearbeiten

In chordalen Graphen lässt sich die Berechnung der Parameter Cliquenzahl, chromatische Zahl, Unabhängigkeitszahl und Cliquenüberdeckungszahl – für beliebige Graphen NP-schwere Probleme – in Linearzeit durchführen. Die Charakterisierung über simpliziale Ecken ermöglicht einen Chordalitätstest in Linearzeit. Als perfekte Eliminationsordnung bezeichnet man dabei eine Knotenreihenfolge   des Graphen  , sodass für jeden Graphen mit der (durch Eliminierung der Knoten   bis  ) eingeschränkten Knotenmenge   gilt:   ist simplizial in  . Jeder (in Bezug auf die gewählte Ordnung) „kleinste“ Knoten in   bildet also mit seinen Nachbarn eine Clique.

Literatur

Bearbeiten
Bearbeiten