Clifford-Modul-Bündel

mathematisches Objekt aus der Differentialgeometrie.

Ein Clifford-Modul-Bündel ist ein mathematisches Objekt aus der Differentialgeometrie. Es wird insbesondere in der Spin-Geometrie zur Untersuchung von Spin-Strukturen genutzt. Es handelt sich um ein Vektorbündel, dessen Fasern Clifford-Moduln – also Darstellungsräume einer Clifford-Algebra sind. Ein kanonisches Beispiel für Clifford-Modul-Bündel sind die Spinorbündel.[1] Eine andere Klasse dieser Bündel sind die Dirac-Bündel.

Der Begriff Clifford-Modul-Bündel sollte nicht mit dem des Clifford-Bündels, das ein Vektorbündel von Clifford-Algebren ist, verwechselt werden.

Definition

Bearbeiten

Es sei   eine riemannsche Mannigfaltigkeit gerader Dimension. Ein Clifford-Modul-Bündel über   ist ein Vektorbündel  , dessen Fasern   Clifford-Moduln sind.

Anders ausgedrückt, ist ein Clifford-Modul-Bündel über   ein  -graduiertes Vektorbündel   mit einer graduierten Aktion

 ,

wobei   das Clifford-Bündel und   die entsprechende Clifford-Multiplikation sind.[2]

Einzelnachweise

Bearbeiten
  1. H. Blaine Lawson, Marie-Louise Michelsohn: Spin geometry (= Princeton mathematical series. Nr. 38). Princeton University Press, Princeton, N.J 1989, ISBN 978-0-691-08542-5, S. 97.
  2. Nicole Berline, Ezra Getzler, Michèle Vergne: Heat kernels and Dirac operators (= Grundlehren der mathematischen Wissenschaften. Nr. 298). Corr. 2nd print Auflage. Springer, Berlin; New York 1996, ISBN 978-3-540-53340-5, S. 113–115.