Delta-Methode
Die Delta-Methode ist in der asymptotischen Statistik eine Methode um die asymptotische Normalverteilung der Funktion einer asymptotisch normalverteilten Zufallsvariablen zu bestimmen.
Univariater Fall
BearbeitenAussage
BearbeitenWenn für eine Folge von Zufallsvariablen mit zwei endlichen Konstanten und
gilt, wobei die Konvergenz in Verteilung bezeichnet, dann gilt für eine differenzierbare Funktion mit :
Beispiel
BearbeitenEs sei eine Folge stochastisch unabhängiger und identisch verteilter Zufallsvariablen mit Erwartungswert und Varianz . Für die Folge der zufälligen arithmetischen Mittel folgt dann aus dem zentralen Grenzwertsatz der Statistik
- .
Wenn man sich für die asymptotische Verteilung von interessiert, dann ist , , und . Die Delta-Methode ergibt dann
Verallgemeinerung
BearbeitenFür den Fall und gibt es eine Verallgemeinerung der Delta-Methode, die Delta-Methode zweiter Ordnung, die besagt, dass
wobei eine standardnormalverteilte Zufallsvariable ist.[3]
Multivariater Fall
BearbeitenFür eine Folge -dimensionaler Zufallsvektoren gelte
mit und einer positiv semidefiniten Matrix . Für eine differenzierbare Funktion bezeichne den Spaltenvektor der partiellen Ableitungen der Funktion an der Stelle , der komponentenweise von Null verschieden ist. Dann gilt
- .[4]
Funktionale Delta-Methode
BearbeitenEs gibt eine Verallgemeinerung für Funktionen einer unendlich-dimensionalen Zufallsvariable (eines stochastischen Prozesses) durch die funktionale Delta-Methode.[5] Die funktionale Delta-Methode wird manchmal auch als Von-Mises-Methode bezeichnet.
Literatur
Bearbeiten- Anil K. Bera, Malabika Koley: A History of the Delta Method and Some New Results. In: Sankhya B: The Indian Journal of Statistics. Band 85, 2023, doi:10.1007/s13571-023-00305-9.
- Gary W. Oehlert: A Note on the Delta Method. In: The American Statistician. Band 46, Nr. 1, 1992, S. 27–29, doi:10.1080/00031305.1992.10475842, JSTOR:2684406.
- Aad W. van der Vaart: Asymptotic Statistics (= Cambridge Series in Statistics and Probabilistic Mathematics). Cambridge University Press, Cambridge 1998, ISBN 978-0-521-78450-4, Kap. 3 Delta Method, S. 25–34.
Einzelnachweise
Bearbeiten- ↑ Larry Wasserman: All of Statistics – A Concise Course in Statistical Inference. Springer, New York 2004, ISBN 978-1-4419-2322-6, 5.13 Theorem (The Delta Method), S. 79, doi:10.1007/978-0-387-21736-9.
- ↑ Larry Wasserman: All of Statistics – A Concise Course in Statistical Inference. Springer, New York 2004, ISBN 978-1-4419-2322-6, 5.14 Example, S. 79, doi:10.1007/978-0-387-21736-9.
- ↑ Anil K. Bera, Malabika Koley: A History of the Delta Method and Some New Results. In: Sankhya B: The Indian Journal of Statistics. Band 85, 2023, S. 4, doi:10.1007/s13571-023-00305-9.
- ↑ Larry Wasserman: All of Statistics – A Concise Course in Statistical Inference. Springer, New York 2004, ISBN 978-1-4419-2322-6, 5.15 Theorem (The Multivariate Delta Method), S. 79–80, doi:10.1007/978-0-387-21736-9.
- ↑ Aad W. van der Vaart: Asymptotic Statistics (= Cambridge Series in Statistics and Probabilistic Mathematics). Cambridge University Press, Cambridge 1998, ISBN 978-0-521-78450-4, Kap. 20 Functional Delta Method, S. 291–303.