Dichtefunktion

spezielle reellwertige Funktion

Eine Dichtefunktion, kurz Dichte,[1] ist eine spezielle reellwertige Funktion, die hauptsächlich in den mathematischen Teilgebieten der Stochastik und der Maßtheorie vorkommt. Dort dienen Dichtefunktionen zur Konstruktion von Maßen oder signierten Maßen über Integrale.

Bekanntestes Beispiel von Dichtefunktionen sind die Wahrscheinlichkeitsdichtefunktionen aus der Wahrscheinlichkeitstheorie. Mit ihrer Hilfe lassen sich viele Wahrscheinlichkeitsmaße konstruieren, ohne auf tiefliegendere maßtheoretische Methoden und Strukturen zurückgreifen zu müssen.

Definition

Bearbeiten

Gegeben sei ein Maßraum   sowie eine positive  -quasiintegrierbare Funktion

 .

Dann lässt sich durch

  für alle  

ein Maß definieren. Die Funktion   heißt dann die Dichtefunktion des Maßes.

Sind umgekehrt   und   Maße auf   und ist

  für eine positive quasiintegrierbare Funktion   und alle  ,

so heißt   die Dichtefunktion des Maßes   bezüglich des Maßes  . Die Funktion wird dann auch als Radon-Nikodým-Dichte oder Radon-Nikodým-Ableitung bezeichnet und als   notiert.

Die Definition für signierte Maße ist in beiden Fällen identisch, lediglich die Positivität der quasiintegrierbaren Funktionen wird fallengelassen.

Beispiele

Bearbeiten

Wahrscheinlichkeitsdichtefunktionen

Bearbeiten

Typisches Beispiel von Dichtefunktionen sind Wahrscheinlichkeitsdichtefunktionen. Dies sind Dichtefunktionen bezüglich des Lebesgue-Maßes   bzw. des Lebesgue-Integrals, bei denen das Maß des Grundraumes eins ist. Die Vorgabe solch einer Funktion   ist eine einfache Möglichkeit, Wahrscheinlichkeitsmaße über

 

zu definieren. Wahrscheinlichkeitsmaße, die sich so definieren lassen, werden absolutstetige Wahrscheinlichkeitsmaße genannt. Sie ermöglichen einen elementaren Zugang zur Wahrscheinlichkeitstheorie, häufig wird dann auch auf die Verwendung des Lebesgue-Integrals verzichtet und stattdessen das Riemann-Integral benutzt. Dann findet sich entsprechend die Notation   anstelle von  .

Zähldichten

Bearbeiten

Ein weiteres Beispiel für Dichtefunktionen sind Zähldichten, auch Wahrscheinlichkeitsfunktionen genannt. Sie ordnen im einfachsten Fall jeder natürlichen Zahl eine positive Zahl zu:

 .

Dabei summieren sich die Funktionswerte zu eins auf und definieren damit über

 

eine diskrete Wahrscheinlichkeitsverteilung. Wählt man als Maß nun das Zählmaß   auf  , so ist

 .

Zähldichten sind somit Dichtefunktionen bezüglich des Zählmaßes.

Existenz

Bearbeiten

Per Definition lässt sich jede positive quasiintegrierbare Funktion in Kombination mit einem Maß zur Definition eines weiteren Maßes heranziehen und damit zur Dichtefunktion erklären.

Sind jedoch zwei Maße   gegeben, so stellt sich die Frage, ob   eine Dichtefunktion bezüglich   besitzt oder umgekehrt. Diese Frage beantwortet der Satz von Radon-Nikodým:

Ist   σ-endlich und ist   absolut stetig bezüglich  , so besitzt   eine Dichtefunktion bezüglich  .

Siehe auch

Bearbeiten

Literatur

Bearbeiten

Einzelnachweise

Bearbeiten
  1. Klenke: Wahrscheinlichkeitstheorie. 2013, S. 159.