Diskussion:Raumkrümmung

Letzter Kommentar: vor 1 Monat von 5.10.4.228 in Abschnitt Raumkrümmung ohne "Zusatzdimension"

Einbettung der Raumzeit in höherdimensionalen Raum

Bearbeiten

Inwiefern geht so etwas überhaupt bei Pseudo-Riemannschen Mannigfaltigkeiten? Gibt es ein Pendant zum Einbettungssatz von Nash? --Chricho ¹ ² ³ 19:14, 2. Nov. 2012 (CET)Beantworten

Winkelsumme im sphärischen Dreieck

Bearbeiten

Meine Korrektur vom 3.9.2013: Ich habe die Angabe der maximalen Winkelsumme im sphärischen Dreieck von 540° auf 900° angehoben und zwar mit folgender Begründung. (Die Winkelsumme 540° ist die maximale Winkelsumme für ein konvexes sphärisches Dreieck [drei Punkte auf einem Großkreis mit je einem Innenwinkel von 180°]). Aber, betrachtet man ein ganz kleines Dreieck, so ist dessen Winkelsumme geringfügig größer als 180°, abhängig - sogar proportional - von der Größe des sphärischen Dreiecks. Insbesondere ist das Komplement, d. h. die vollständige Sphäre, wobei das kleine sphärische Dreieck herausgeschnitten ist, ebenfalls ein sphärisches Dreieck mit der Summe der Innenwinkel = 3 * Vollkreis vermindert um die Winkelsumme des kleinen sphärischen Dreiecks, also 3 * 360° - ( 180° + epsilon) = 1080° - 180° - epsilon! --Wolfgang Volk, Berlin 21:10, 3. Sep. 2013 (CEST)Beantworten

Das finde ich ohne einen weiteren Satz zur Erläuterung zu kompliziert und daher hier fehl am Platze. Bau es doch besser in Kugeldreieck und Sphärische Geometrie ein! Hier hab ich revertiert.--jbn (Diskussion) 22:23, 3. Sep. 2013 (CEST)Beantworten
So wie es da steht bleibt es fragwürdig. Wie wär's wenn man einen Bezug zum sogenannten eulerschen Kugeldreieck herstellt, d. h. '(bis zu 540 Grad, siehe Eulersche Kugeldreiecke)' oder vielleicht besser '(bis zu 540 Grad für Eulersche Kugeldreiecke)'. Dort stehen in einem anderen Abschnitt die Formeln für allgemeine und für eulersche sphärische Dreiecke, beide mit den Schranken im Bogenmaß, 5*pi = 900° versus 3*pi = 540° . Außerdem halte ich es für sinnvoller statt der ausgeschriebenen Einheit 'Grad' das Symbol '°' zu verwenden. --Wolfgang Volk, Berlin 12:45, 4. Sep. 2013 (CEST)Beantworten
So, ganz einfach. Mehr wäre imho in diesem Artikel einfach Thema verfehlt. Einverstanden? --jbn (Diskussion) 12:55, 4. Sep. 2013 (CEST)Beantworten
Ich habe mir erlaubt noch ein paar sprachliche Korrekturen anzubringen. Insbesondere habe ich beim Satz zur Summe der Innenwinkel sphärischer Dreiecke aus 'können ... haben' strenger 'haben' gemacht, da die Winkelsumme stets größer als 180° ist (der "Überlauf" ist proportional zur Dreiecksfläche). --Wolfgang Volk, Berlin 15:53, 4. Sep. 2013 (CEST)Beantworten
Ja, sehr gut alles. Hab ich übersehen. --jbn (Diskussion) 19:19, 4. Sep. 2013 (CEST)Beantworten

Zum allgemeinen Ergötzen des Publikums :

Bearbeiten

Post findet sich auch bei Wiki Raumzeit:

Einfacher Weg, um die Raum-Zeit-Krümmung der Erde selbst zu bestimmen: Baue dir ein Pendel. Miss dessen Länge und die Zeit, die es für eine komplette Schwingung benötigt:

Bei einem Pendel von 1m Länge sind das ca. 2s. Die Formel für die Schwingungsdauer des Pendels lautet: T = 2*Pi*Wurzel (l/g) Die Formel für die Raumkrümmung lautet: R = g/c² umgestellt nach g: g = R * c² Einsetzen ergibt: T = 2 * Pi * Wurzel(l/R * c²) Aufgelöst erhält man R = 1,1 * 10-16 1/m Der Kehrwert (also der Krümmungsradius) ergibt ca. 1 Lichtjahr. Einen einfacheren Weg gibt es wohl nicht …

Nach: http://www.raumzeit-fuer-alle.de/Exzerpt%20ART.pdf

Da kann sich das jeder für die Erde ausrechnen ...

Ist zwar nicht im Stil eines Lehrbuches der Theoretischen Physik, aber eine nette Spielerei, bei der man auf die richtigen Werte kommt ...

Wenigstens auf die gleichen Werte, wie Misner, Thorne, Wheeler in Gravitation (1973) (nicht signierter Beitrag von 80.139.80.211 (Diskussion) 11:43, 17. Jun. 2015 (CEST))Beantworten

äußere Krümmung

Bearbeiten

ohne dass man es zerreißt oder verknittert. ... die Innenwinkelsumme eines aufs Papier gemalten Dreiecks ändert sich nicht, wenn man das Papier aufrollt

die Winkel ändern sich auch nicht, wenn das Papioer knittert, ich denke, dass Knittern auch keine innere Krümmung verursacht! Ra-raisch (Diskussion) 12:20, 12. Dez. 2015 (CET)Beantworten

Raumkrümmung ohne "Zusatzdimension"

Bearbeiten

Hallo zusammen

Lange Zeit war ich der Auffassung, dass ein gekrümmter Raum in einen "höherdimensionalen Raum" eingebettet sein müsse (in einen sogenannten Hyperraum). Heute vertreten jedoch bekannte Physiker die Meinung, dass dies auch innerhalb unserer bekannten vierdimensionalen Raumzeit möglich sei. Was hält ihr von der Aussage: Der Raum krümmt sich in die Zeit und die Zeit in den Raum (jetzt mal rein hypothetisch ohne irgendeine Quelle)? Gruß Ralph --Ralph Reichelt (Diskussion) 17:09, 19. Mai 2016 (CEST)Beantworten

Keine gute Idee: Das Einbetten hilft sehr bei der Veranschaulichung, ist aber formal nicht nötig. / Raumkrümmung ist ein allgemeines mathematisches Konzept, das weder mit (3D-)Raum noch mit Zeit noch mit Raumzeit zwingend zu tun hat. / Und dwas das gegenseitige Hineinkrümmen von Raum und Zeit bedeuten soll, ist (mir jedenfalls) vollkommen schleierhaft. --jbn (Diskussion) 22:32, 19. Mai 2016 (CEST)Beantworten
Hallo jbn, besten Dank für deine Antwort. Die Version vom gegenseitigen Hineinkrümmen erzählte mir vor einiger Zeit ein Physiker, ich hatte aber (als interessierter Laie) damit auch meine Zweifel. Klar ist für mich deine Aussage, dass das Einbetten hilfreich, aber formal nicht nötig ist. Gruß Ralph --Ralph Reichelt (Diskussion) 11:29, 20. Mai 2016 (CEST)Beantworten
Vielleicht hatte Dein Gesprächspartner im Sinn, dass Raum und Zeit nicht unabhängig voneinander gekrümmt vorzustellen sind sondern in einem verflixten 4-dimensionalen Mix, wenn ich das mal so sagen darf.--jbn (Diskussion) 11:49, 20. Mai 2016 (CEST)Beantworten
Was diese Einbettung betrifft , bin ich der Meinung , daß die Aussage im Abschnitt " Praktische Anwendung "  : " Im Allgemeinen wird davon ausgegangen ....... " , entweder entfernt wird , oder mit ausreichenden Belegen versehen wird ! Wer ist denn das , der " im Allgemeinen " davon ausgeht und warum geht er einfach so davon aus ? --5.10.4.228 05:24, 9. Nov. 2024 (CET)Beantworten
Dann bring doch erstmal bitte ein paar gegenteilige Belege. --Bleckneuhaus (Diskussion) 15:55, 9. Nov. 2024 (CET)Beantworten
Hallo Bleckneuhaus , grundsätzlich werden in der Wikipedia nur Belege für eine Aussage gefordert . Sollte eine Aussage noch Gegenstand einer Diskussion sein , dann wären natürlich Belege von beiden Seiten nützlich. Was das Thema Einbettung der Einstein'schen Raumzeit in höhere Dimension betrifft , fände ich es schon interessant , warum man dieser Ansicht der Nichteinbettung sein muß und ob es auch andere Denkmöglichkeiten gibt , die der dazu erforderlichen Mathematik nicht zuwider laufen . Vielen Dank , für deine Antwort und dir alles Gute ! --5.10.4.228 11:04, 11. Nov. 2024 (CET)Beantworten