Diskussion:Rayleigh-Quotient
Einleitung
BearbeitenEin allgemeinverständlicher Einleitungssatz wäre wünschenswert.--Erichs Rache 13:07, 3. Aug 2005 (CEST)
- Hm, da gibt es schon etwas: Interpretiert man als Selbstabbildung des , so beschreibt der Rayleigh-Quotient die Projektion dieser Abbildung auf einen eindimensionalen Untervektorraum (das betrifft Definitionsbereich und Bildraum).
- Am einfachsten macht man sich das anhand eines Beispieles klar. Um einen im Schwerpunkt aufgehängten Kreisel mit Trägheitstensor aus der Ruhelage zu beschleunigen, benötigt man das Anfangsmoment
- wobei die gewünschte Anfangsbeschleunigung ist. Ist der Kreisel um eine Achse mit Richtungsvektor , drehbar gelagert, so interessiert man sich hauptsächlich für das Drehmoment um diese Drehachse (das ist das Moment, das der Motor aufbringen muss). Außerdem lässt sich der Kreisel nur in dieser Drehrichtung beschleunigen, d. h. lässt sich mit einem in der Form darstellen. Damit erhält man
- Der Rayleigh-Quotient von in Richtung stellt also (in diesem Beispiel) gerade den Zusammenhang zwischen und dar. (Bemerkung: Da bei der Drehbewegung das Trägheitsmoment in Drehrichtung konstant bleibt und das gyroskopische Moment senkrecht auf der Drehachse steht, gilt die letzte Gleichung sogar, wenn der Kreisel sich schon dreht.)
- Ist der Kreisel zum Beispiel ein Stab, so wird man für eine Beschleunigung um die Längsachse ein viel kleineres Drehmoment benötigen, als für eine Beschleunigung um eine Querachse. --TN 22:44, 30. Sep 2006 (CEST)
Widerspruch
BearbeitenDie Matrix mit
hat den zweifachen Eigenwert 0. Mit gilt
im Widerspruch zu . TN 18:34, 24. Aug 2006 (CEST)
Und überhaupt können die Eigenwerte von nicht symmetrischen Matrizen ja komplex sein. Ich denke, die obige Aussage funktioniert nur für hermitesche Matrizen. Dort allerdings auf jeden Fall, da man unitär (d.h. normerhaltend) auf Diagonalgestalt transformieren kann und dann dort auf Maximum und Minimum des Rayleigh-Quotienten testen kann. TN 18:40, 24. Aug 2006 (CEST)
- Wollen wir diesen Diskussionsbeitrag löschen, ihn als warnendes Beispiel mit auf die Hauptseite stellen oder alles so lassen, wie es ist?--TN 22:44, 30. Sep 2006 (CEST)
Überarbeiten/Löschen
BearbeitenDer Artikel strotzt nur so von Redundanz. Meines Erachtens kann man den Anfang bis einschließlich "...hat eine enge Beziehung zu den Eigenwerten von A." komplett löschen. Den Teil zur Hermiteschen Matrix kann man eigentlich auch weglassen. Es ist nunmal so, dass herm. Matrizen reelle Eigenwerte haben, damit eine Ordnung definiert ist und diese Aussage damit den Wert einer Tautologie hat... Wer keine Ahnung davon hat, wird davon doch nur verwirrt... Wenn ich so drüber nachdenke sollte das ganze Lemma gelöscht werden und in den Artikel Eigenwerte verschoben werden.
--Haize 20:07, 19. Sep. 2007 (CEST)
was bedeutet x*?
BearbeitenSo sehr mir der Artikel auch hilft vermisse ich eine Erklärung von x*!!
x^H vs. x*
BearbeitenDie Bezeichnung x^H für den adjungierten Vektor finde ich unnötig inkonsistent mit der Variante x*, die auch ausschließlich im weiteren Verlauf verwendet wird. Klar, wer googeln kann findet sofort, dass es dasselbe ist. Dennoch unschön, dass das so ganz ohne Erklärung dasteht. --Mr Gauß (Diskussion) 10:26, 2. Okt. 2022 (CEST)
- Hallo, ich habe das H wieder durch einen * ersetzt. --Christian1985 (Disk) 12:41, 2. Okt. 2022 (CEST)