Diskussion:Sackur-Tetrode-Gleichung

Letzter Kommentar: vor 10 Jahren von Impulseigenzustand

"Die Sackur-Tetrode-Gleichung ist eine quantenmechanisch abgeleitete Formel [...]" - Handelt es sich bei der Gleichung nicht eher um eine Formel, die aus der reinen statistischen Physik kommt? Ich wüsste nicht, an welcher Stelle der Herleitung man QM benutzt. Der Hinweis zur Quantnmechanik ist meiner Meinung nach an dieser Stelle falsch. (nicht signierter Beitrag von 87.187.39.155 (Diskussion | Beiträge) 11:50, 27. Jan. 2009 (CET)) Beantworten

Im Grunde ist die Sakur-Tetrode eine klassische Gleichung, sehe ich auch so. Aber die Herleitung hat ausgeprägten Lehrbuchcharakter und wirkt wie aus einem Vorlesungsskript abgeschrieben! Die Frage ist, ob sowas wirklich in ein Lexikon gehört... --134.61.17.25 18:09, 18. Mär. 2009 (CET)Beantworten

Ich finde die Herleitung auch nicht so gut,- wozu der Übergang zu Kugelkoordinaten - das bringt finde ich keinerlei Effekt (außer, dass die Herleitung unnötig länger wird), da in der Deltadistribution (dritte Zeile) doch schon direkt die Gleichung für eine Sphäre in kartesischen Koordinaten drinsteht?! (1=x^2+y^2+...) -- Castro89 21:33, 14. Dez. 2010 (CET)Beantworten
Hast du mal versucht, das Impulsraumintegral in kartesischen Koordinaten auszurechnen?--Impulseigenzustand (Diskussion) 06:03, 15. Okt. 2014 (CEST)Beantworten

Die Gleichung ist in der angegebenen Form aus Dimensionsgründen falsch. (nicht signierter Beitrag von 91.89.11.170 (Diskussion) 11:21, 1. Nov. 2011 (CET)) Beantworten

Der Autor dieser Herleitung scheint jene einfach nur von einem Buch abgeschrieben zu haben, da er offensichtlich eine falsche Stirlingformel für die Näherung der Fakultät benutzt, denn ihr fehlt ein Faktor sqrt(2*pi*N)! Habe dies daher korrigiert. Da am Ende dies aber nur Einfluss auf den Faktor mit ln(1/E_0) hat und dieser vernachlässigt wird, hat der Autor Glück gehabt, dass dieser Patzer nicht fataler ausgefallen ist. (nicht signierter Beitrag von 83.187.182.178 (Diskussion) 23:38, 16. Mai 2013 (CEST))Beantworten

Ohne der Autor zu sein oder ihn zu kennen, würde ich das Weglassen des Wurzelfaktors nicht als Patzer bezeichnen, da dies absolut üblich ist, wenn N groß ist und das Ergebnis auch noch logarithmiert wird. Was ist schon ln(N) gegen N*ln(N) und N für N=10^20? Die Einbringung eines Terms, den man nachher sowieso vernachlässigt, bringt keinerlei Vorteil, insofern m. E. eine überflüssige Korrektur.
Übrigens ergibt sich auch unter direkter Vernachlässigung des Wurzelterms in der Entropie noch ein Term, der nicht ~N ist und daher vernachlässigt werden kann. Dieser Term macht den Unterschied zwischen der bei der Herleitung angesetzten Zustandssumme, also der Anzahl der Zustände auf der Energiehyperfläche pro Energie, und der Anzahl der Zustände im gesamten, von der Hyperfläche umschlossenen Volumen, welche im Endergebnis zu finden ist. Auf diesen Unterschied könnte man hinweisen, außerdem sollte man die Zustandssumme bei der Berechnung der Entropie mit einem Delta E multiplizieren (-> Anzahl Zustände in der Energieschale), denn ein dimensionsbehaftetes Argument im Logarithmus ergibt keinen Sinn.
Und sieht jemand irgendeinen Sinn darin, statt einfach zu schreiben?--Impulseigenzustand (Diskussion) 06:03, 15. Okt. 2014 (CEST)Beantworten