Diskussion:Zeitgleichung
Archiv |
Wie wird ein Archiv angelegt? |
Elevationsänderung und ihr azimutaler Effekt, mit korrigierter Berechnung
BearbeitenNoch einmal die grundsätzlichen Überlegungen:
- Der von der Erde aus beobachtete Meridiandurchgang der Sonne findet Tag für Tag mit veränderter Elevation (β) statt.
- Nur wenn diese Elevationsänderung (Δβ) exakt senkrecht zur Erdbahnebene erfolgen würde, hätte sie in Relation zu letzterer keine seitliche (azimutale) Komponente.
- Aufgrund der Neigung der Erdachse träfe das eingeschränkt lediglich für die Solstitien zu.
- Zu den Äquinoktien verläuft die tägliche Elevationsänderung um 23,44° (ε) zur Senkrechten (auf die Ekliptik) geneigt. Die Blickrichtung bei Beobachtung des Meridiandurchganges bekommt dadurch eine (in Bezug zur Ekliptikebene) nach links gerichtete Komponente. Der Blick schwenkt nach Osten, der Sonne entgegen.
- Dieser Schwenk beschreibt einen Winkel (φ, siehe unten) von etwa 0,175°.
- Die dafür nötige Drehung der Erde dauert knapp 42 Sekunden.
- Also erscheint der wahre Sonnentag zu den Äquinoktien um diese Zeitspanne kürzer als zu den Solstitien, denn:
Der Beobachter lässt bei Frühlings- und Herbstbeginn seinen Blick zum Meridiandurchgang in diesem Ausmaß der Erdrotation vorauseilen, wenn er die Elevation seiner Blickrichtung gegenüber dem Vortag ändert.
Grafisch dargestellt:
Änderung der Elevation (Δβmax) zu den Äquinoktien in rot, "Verkürzungswinkel" (φ) in grün.
Die mathematische Darstellung:
Eine Berechnung von φ über Δβmax * sin ε kann direkt mit den Winkeln oder mit ihrem Tangens erfolgen, die Differenzen daraus liegen letztlich im Bereich von Millisekunden.
Um davon ausgehend die Verkürzung des wahren Sonnentages im Jahresverlauf zu bestimmen, werden die beiden Größen als Funktion des Bahnwinkels (ω) dargestellt und wie oben miteinander verrechnet:
- Elevationsänderung (Δβ):
tageweise Differenz der Elevation des Meridiandurchgangs
- effektiver Neigungswinkel (εeff):
zwischen Ekliptikebene und der Ebene durch Erdachse und Bahnradius
Er zeigt die scheinbare Änderung von ε übers Jahr beim Blick entlang der Verbindungslinie Erde - Sonne. Dieser Winkel bestimmt den azimutalen Anteil der Elevation, null zu den Solstitien, maximal zu den Äquinoktien, dazwischen wie folgt berechenbar.
Δβ während eines Jahres:
Mehrere Rechenwege sind denkbar, mit geringem Effekt auf die absoluten Werte, aber ohne relevante Auswirkungen auf deren Verlauf.
Hier wird β als ε * -cos ω berechnet und in blau dargestellt:
Rot zeigt die Winkeländerung als Differenz von Tageswerten. Alternativ ist natürlich auch die Ableitung der Funktion möglich, die Unterschiede im Ergebnis sind jedoch sehr gering.
εeff während eines Jahres:
Projiziert man einen Erdpol in die Ekliptikebene, kann man die Distanz des Projektionspunktes zum Erdmittelpunkt als Tangens von ε beschreiben. Bezogen auf den Bahnradius und beginnend mit dem Wintersolstitium ändert sich der Tangens mit dem Sinus des Bahnwinkels (ω). Der effektive Neigungswinkel folgt also der Funktion εeff = arctan (tan ε * sin ω).
Das Ergebnis:
Es entsteht ein bekanntes Bild, eine Kurve mit zwei Maxima und zwei Minima im Lauf eines Jahres. Die x-Achse ist in Tagen skaliert, Ursprung ist das Wintersolstitium. Aufgrund der Betrachtungsweise einer Verkürzung des Sonnentages ausgehend von der größten Tageslänge zu Winter- und Sommerbeginn, liegt sie durchgehend im negativen Bereich und berührt die x-Achse lediglich zu den Solstitien.
Nach Verschiebung um eine halbe Amplitude in positive Richtung und Überlagerung mit einer einfachen Cosinusfunktion (mit zwei Schwingungsperioden pro Jahr) sieht man die Ähnlichkeiten der hier durchgeführten Berechnungen zu den üblichen Darstellungen. Die größte Zeitdifferenz zwischen den beiden Kurven beträgt etwas mehr als 0,18 Sekunden.
Auch die maximale Differenz zwischen wahrer und mittlerer Zeit (zufolge der geneigten Erdachse) lässt sich auf verschiedene Arten berechnen. Man kann die Unterschiede der wahren Tageslängen von einem Nulldurchgang zum nächsten Maximum aufsummieren, oder man geht in die Stammfunktion der angenäherten Cosinusfunktion und rechnet über deren Steigung im Nulldurchgang.
In beiden Fällen ergibt das (symmetrisch zur x-Achse) etwa zehn Minuten, mit rund zehn Sekunden Unterschied, je nach Methode.
Die hier beschriebene, gut vorstellbare Erklärung des Einflusses der Erdachsenneigung auf die Zeitgleichung lässt sich also auch rechnerisch belegen.--Philipp Rudolf Leo (Diskussion) 20:51, 24. Jan. 2024 (CET)
- Die Zeitgleichung ist nicht von einem Beobachtungsort auf der Erde abhängig, sie gilt überall. Du arbeitest aber mit dem Höhenwinkel im Horizontsystem eines Beobachtungsortes. Wenn Dein Weg brauchbar sein sollte, müsste in Deinen Rechnungen zunächst die geographische Breite vorkommen, die später verallgemeinernd wieder entfällt. Dieses finde ich in obiger Abhandlung nicht. --Natus37 (Diskussion) 12:03, 26. Jan. 2024 (CET)
- In welcher Weise ist die Differenz des Höhenwinkels (des Meridiandurchgangs) zwischen den Solstitien vom Beobachtungsort abhängig? Wo ist das nicht +/-23,44° symmetrisch zu den Äquinoktien? Ich arbeite ja gerade nicht mit einem fixen Beobachtungsort, so wie das eben Siegfried Wetzel im gängigen Erklärungsmodell tut. Und unter anderem deswegen scheint mir das falsch zu sein. --Philipp Rudolf Leo (Diskussion) 14:52, 26. Jan. 2024 (CET)
- natus37 ist Siegfried Wetzel. --2001:A61:35A7:5C01:6130:D5C6:608:D71C 15:43, 26. Jan. 2024 (CET)
- Danke für den Hinweis! --Philipp Rudolf Leo (Diskussion) 15:49, 26. Jan. 2024 (CET)
- Noch ein Tipp von mir: natus37 hat immer recht. Du wirst leider verlieren. --2001:A61:35A7:5C01:6130:D5C6:608:D71C 15:46, 26. Jan. 2024 (CET)
- Ich sehe das hier nicht als Wettkampf, sondern als eine Diskussion über ein naturwissenschaftliches Thema. Ich hoffe daraus zu lernen, Fehler zu erkennen. Schade wäre, wenn der Dialog in Dogmatik untergeht. Aber auch das wäre eine Art von Erkenntnis ... --Philipp Rudolf Leo (Diskussion) 16:00, 26. Jan. 2024 (CET)
- natus37 ist Siegfried Wetzel. --2001:A61:35A7:5C01:6130:D5C6:608:D71C 15:43, 26. Jan. 2024 (CET)
- Der Einwand von natus37 ist prinzipiell berechtigt. Für die Änderung des Höhenwinkels um 12 Uhr ist es aber egal, ob man vom Äquator oder vom Horizont aus misst. Mit Elevation ist wahrscheinlich eher die Deklination gemeint.
- Ich habe mal nach der im Wiki-Artikel angegebenen Methode gerechnet und das Ergebnis mit der neuen Methode verglichen. Zu meiner Verwunderung waren beide Ergebnisse gleich.
- Zu den Tag-und-Nacht-Gleichen ist der wahre Sonnentag um 19,5 Sek. kürzer als der mittlere Tag.
- Zu den Sonnenwenden ist der wahre Sonnentag um 21,3 Sek. länger als der mittlere Tag.
- Addiert man beide Werte, erhält man 40,8 Sek. Das ist exakt das, was auch nach der neuen Methode herauskommt (es stimmt nicht nur der Zahlenwert überein, sondern es ist auch mathematisch das Gleiche). Da ist also auf jeden Fall etwas dran. Als einfach und leicht verständlich würde ich es aber im Moment nicht bezeichnen. Vielleicht kannst du es noch verständlicher erläutern, z.B. mit einer 3D-Skizze.
- Ich habe mich inzwischen etwas umgesehen. Es werden die kompliziertesten Näherungslösungen erdacht. Dabei gibt es eine einfache, geschlossene Lösung (siehe Wikipedia: Berechnung)!--MLTP (Diskussion) 09:06, 30. Jan. 2024 (CET)
- MLTP, ich habe immer noch nicht verstanden, worum es PRL eigentlich geht. Die fortwährende Änderung der Themenüberschrift trägt ihr Übriges dazu bei. Offensichtlich blickst Du, nachdem inzwischen etwa 6 Wochen vergangen sind, doch einigermaßen durch. Schreibe doch bitte einmal den Grundgedanken mit Deinen Worten hier auf. Eine explizite Methode im Artikel dazu, wie man die Tageslängen berechnet, ist mir unbekannt.
--Natus37 (Diskussion) 11:30, 30. Jan. 2024 (CET)- Wenn jemand etwas nicht versteht, versucht man einen anderen Weg der Erklärung. Oder man gibt irgendwann auf. Du bist anscheinend zumindest nicht bereit, Verständnis zu entwickeln. Wie gesagt, auch das kann eine Erkenntnis sein ... --Philipp Rudolf Leo (Diskussion) 13:09, 30. Jan. 2024 (CET)
- MLTP, ich habe immer noch nicht verstanden, worum es PRL eigentlich geht. Die fortwährende Änderung der Themenüberschrift trägt ihr Übriges dazu bei. Offensichtlich blickst Du, nachdem inzwischen etwa 6 Wochen vergangen sind, doch einigermaßen durch. Schreibe doch bitte einmal den Grundgedanken mit Deinen Worten hier auf. Eine explizite Methode im Artikel dazu, wie man die Tageslängen berechnet, ist mir unbekannt.
- Siehe oben, das ist die 3D-Skizze:
- In welcher Weise ist die Differenz des Höhenwinkels (des Meridiandurchgangs) zwischen den Solstitien vom Beobachtungsort abhängig? Wo ist das nicht +/-23,44° symmetrisch zu den Äquinoktien? Ich arbeite ja gerade nicht mit einem fixen Beobachtungsort, so wie das eben Siegfried Wetzel im gängigen Erklärungsmodell tut. Und unter anderem deswegen scheint mir das falsch zu sein. --Philipp Rudolf Leo (Diskussion) 14:52, 26. Jan. 2024 (CET)
- Der Beobachter steht im Schnittpunkt von schwarzer und grüner Linie und schaut Richtung Sonne. Er beobachtet am Tag des Frühlingsbeginns den Meridiandurchgang um 0,4032° höher über dem Horizont (mit um 0,4032° größerem Höhenwinkel, größerer Elevation) als am Tag davor.
- Diese Blickhebung verläuft entlang eines Längenkreises, also gegenüber der Senkrechten auf die Ekliptikebene um 23,44° nach links geneigt. Daraus ergibt sich zwingend, dass die Blickrichtung des Beobachters sich nicht nur hebt, sondern gleichzeitig nach links, Osten, der Sonne entgegen schwenkt.
- Auch im Herbsthalbjahr ist die azimutale Komponente der Elevationsänderung immer nach links gerichtet und verkürzt so den Sonnentag, weil sich die Blickrichtung nun von Tag zu Tag senkt. Das zeigt der rechte Teil der Grafik.
- Letztlich geht es hier um eine simple trigonometrische Funktion, die man mit verschiedenen Methoden finden kann. Selbst wenn man nur aus einer gewissen Anzahl von Messpunkten ein Diagramm erstellt, könnte man diese Funktion allein anhand der Kurve "erraten" und so zu einer korrekten Berechnungsmethode kommen. Nur erklärt das - wie alle anderen Darstellungen, die ich bis jetzt finden konnte - nicht die geometrischen Grundlagen des Phänomens.
- Und nur eine wirklich an die Basis gehende, korrekte Beschreibung kann man "Erklärung" nennen. Bisher wurden für mich mehr oder weniger plausibel verschiedene Rechenwege dargestellt. --Philipp Rudolf Leo (Diskussion) 13:00, 30. Jan. 2024 (CET)
- Um es weiter zu verdeutlichen:
- Lassen wir die Neigung der Erdachse größer werden, bis sie 90° erreicht, Uranus gleich parallel zur Bahnebene liegt.
- Eine Blickhebung, mittags zu Frühlingsbeginn, senkrecht zum Erdäquator ist dann identisch mit einer Drehung in der Ekliptikebene, der Sonne entgegen.
- Der Beobachter liegt also in Bezug zur Ekliptik quasi auf seiner linken Seite. Wendet er den Blick erdbezogen senkrecht nach oben, dreht er ihn ekliptikbezogen in gleichem Maß der Sonne entgegen. --Philipp Rudolf Leo (Diskussion) 17:07, 30. Jan. 2024 (CET)
- Diese Überlegung wiederum mathematisch betrachtet:
- Wenn - wie oben abgeleitet - φ = β * sin ε, dann ist bei ε = 90° natürlich φ identisch mit β. --Philipp Rudolf Leo (Diskussion) 19:09, 30. Jan. 2024 (CET)
- Anbei die angekündigten Animationen. Meine Bezeichnungen behalte ich bei, auch wenn sie nicht allen terminologischen Anforderungen entsprechen sollten. Fürs Verständnis dürfte das aber kein ernsthaftes Problem darstellen.
- Die obigen Ausführungen habe ich dementsprechend korrigiert.
- --Philipp Rudolf Leo (Diskussion) 17:03, 23. Feb. 2024 (CET)