Doobsche Maximalungleichung

mathematischer Satz
(Weitergeleitet von Doobsche Ungleichung)

Die Doobsche Maximalungleichung ist eine der zentralen Ungleichungen in der Stochastik. Neben der Burkholder-Ungleichung ist sie eine der gängigsten Berechnungsmethoden für die (stochastische) Größenordnung von (stetigen) Martingalen. Sie ist nach Joseph L. Doob benannt und findet sich in der Literatur unter unterschiedlichen Namen (Doobsche -Ungleichung,[1] Doobsche Ungleichung(en),[2] Doobsche Extremal-Ungleichungen,[3] Maximale Ungleichung,[4] Doobs Maximal-Ungleichung[5]) wie auch in leicht unterschiedlichen Formulierungen, die sich durch die Anzahl der angegebenen Ungleichungen und die Voraussetzungen unterscheiden. Die Benennung als -Ungleichung folgt aus der Verwendung der -Norm, die Benennung als "Maximal", da das Supremum der ersten Glieder des Prozesses abgeschätzt wird. Es finden sich auch Unterschiede in der Notation, so werden entweder die -Norm oder der Erwartungswert zur Formulierung verwendet.

Diskrete Indexmenge

Bearbeiten

Sei   ein stochastischer Prozess. Definiere

  und  

Ist   ein Submartingal, dann gilt für jedes  

 .

Ist   ein Martingal oder ein positives Submartingal und ist   sowie  , so gilt

 .

Des Weiteren gilt für jedes   immer

 

In der Formulierung finden sich diverse Unterschiede. So zählen manche Autoren die erste Ungleichung nicht dazu,[6] andere formulieren lediglich die erste und die zweite Ungleichung, und diese nur für positive Submartingale[7], zeigen nur einen Spezialfall für fixes   [8] oder nennen die erste Ungleichung Doobsche Extremal-Ungleichung und die zweite Doobsche  -Ungleichung.[9]

Stetige Indexmenge

Bearbeiten

Es sei   ein Martingal oder nichtnegatives Submartingal und   und sei   rechtsstetig. Dann gilt[10] für alle  :

 .

Dabei bezeichnet   die Lp-Norm. Man beachte, dass   die konjugierte reelle Zahl zu   ist, d. h., es gilt  . Entsprechend ist der zentrale Beweisschritt die Anwendung der Hölder-Ungleichung.

Literatur

Bearbeiten

Einzelnachweise

Bearbeiten
  1. Klenke: Wahrscheinlichkeitstheorie. 2013, S. 222.
  2. Klenke: Wahrscheinlichkeitstheorie. 2013, S. 484.
  3. Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. 2014, S. 284.
  4. Schmidt: Maß- und Wahrscheinlichkeit. 2011, S. 430.
  5. Meintrup, Schäffler: Stochastik. 2005, S. 327.
  6. Klenke: Wahrscheinlichkeitstheorie. 2013, S. 222.
  7. Meintrup, Schäffler: Stochastik. 2005, S. 327.
  8. Schmidt: Maß- und Wahrscheinlichkeit. 2011, S. 430.
  9. Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. 2014, S. 284–286.
  10. Heinz Bauer: Wahrscheinlichkeitstheorie. 5. Auflage. De-Gruyter-Lehrbuch, Berlin 2002, ISBN 3-11-017236-4, S. 412f