Eulersche Vermutung

Zahlentheorie

Die Eulersche Vermutung aus dem Jahr 1769 ist eine nach Leonhard Euler benannte Vermutung der Zahlentheorie und verallgemeinert die Fermatsche Vermutung. Die Eulersche Vermutung ist mittlerweile widerlegt, während die Fermatsche Vermutung bewiesen wurde.

Vermutung

Bearbeiten

Die Eulersche Vermutung besagt, dass es keine positiven ganzzahligen Lösungen   der Gleichung   gibt, wenn   und   ganze Zahlen sind mit  . Fermat bewies angeblich die Vermutung für   (Fermatsche Vermutung), veröffentlichte aber nur einen Beweis für   und  . Euler gab für   einen Beweis an, siehe Großer Fermatscher Satz, für größere   und   konnte er weder einen Beweis noch ein Gegenbeispiel finden.

Widerlegungen

Bearbeiten

Fall n = 5

Bearbeiten

Für den Fall   fanden L. J. Lander und T. R. Parkin 1966 ein Gegenbeispiel:[1]

 

Fall n = 4

Bearbeiten

Für   fand Noam Elkies 1988 folgendes Gegenbeispiel:[2]

 

Elkies bewies zudem, dass es für   unendlich viele Lösungen gibt.

Die kleinste Lösung für   lautet

 .

Diese Minimallösung wurde nach der Publikation der ersten Lösung durch Elkies von Roger Frye gefunden.[3][4]

Verwandte Fragestellung

Bearbeiten

Zusammen mit seiner Vermutung äußerte Euler zudem, dass es möglich sein sollte, vier 4. Potenzen zu finden, deren Summe eine 4. Potenz ergibt. Diese Vermutung wurde 1911 durch R. Norrie positiv beantwortet:

 

Für diese allgemeine Form

 

wurde 2008 von Lee W. Jacobi und Daniel J. Madden gezeigt, dass sie unendlich viele positive ganzzahlige Lösungen hat. Es wurde auch eine besonders ästhetische Lösung der Form

 

in ganzen Zahlen gefunden:[5][6]

 
 

Diese Gleichung nennt man auch Jacobi-Madden-Gleichung.

Literatur

Bearbeiten
  • Richard K. Guy: Unsolved problems in number theory. Springer, New York 1994, ISBN 0-387-94289-0.
  • Ian Stewart, David Tall: Algebraic Number Theory and Fermat’s Last Theorem. 3. Auflage. A K Peters, Natick MA 2002, ISBN 1-56881-119-5.
Bearbeiten

Einzelnachweise

Bearbeiten
  1. L. J. Lander, T. R. Parkin: Counterexample to Eulers’s conjecture on sums of like powers. In: Bull. Amer. Math. Soc. Band 72, 1966, S. 1079.
  2. Noam Elkies: On  . In: Math. Comput. Band 51, 1988, S. 825–835.
  3. Ian Stewart, David Tall: Algebraic Number Theory and Fermat’s Last Theorem. 3. Auflage. A. K. Peters, Natick MA 2002, ISBN 1-56881-119-5, S. 232.
  4. Ivars Peterson: Euler’s Sums of Powers. (Memento vom 1. Dezember 2012 im Internet Archive) In: ScienceNews, 2004.
  5. American Mathematical Monthly. März 2008.
  6. Variationen zu einer Vermutung Eulers. In: Neue Zürcher Zeitung. 14. Mai 2008, ISSN 0376-6829 (nzz.ch [abgerufen am 18. Februar 2024]).