Als Fixelemente einer Abbildung bezeichnet man in der Geometrie Mengen des Definitionsbereiches, die auf sich selbst abgebildet werden. Zu ihnen gehören:

  • Fixpunkte
  • Fixpunktgeraden für alle Punkte einer Geraden g. Alle Punkte der Geraden sind also Fixpunkte der Abbildung.
  • Fixgeraden (nicht aber zwingend für , etwa bei Umkehrung der Orientierung: hier gibt es nur einen Fixpunkt; Fixpunktgeraden sind spezielle Fixgeraden)
  • Fixkreis der Inversion für , der Einheitskreis – auch hier strenge und weniger strenge Form vorhanden, das Beispiel gibt die strenge Form punktweise für alle
  • Fixebenen in räumlichen Problemen
  • wo die anschaulichen Begriffe der Geometrie bei mehr als dreidimensionalen Problemen versagen, spricht man meist nur mehr von Fixelementen
  • für die Klassifikation der Affinitäten und Projektivitäten sind Fixpunkthyperebenen wichtig: So heißen Teilräume der abgebildeten Räume, deren Dimension um eins kleiner ist als die des Gesamtraums, wenn sie bei einer Abbildung punktweise fest bleiben.

Fixelemente sind die Symmetrieachsen (bzw. -punkte und sonstige Elemente) einer geometrischen Symmetrie.

Literatur

Bearbeiten
  • Fixelement. In: H. Athen, J. Bruhn (Hrsg.): Lexikon der Schulmathematik. [Lizenz] Studienausgabe. 2 F–K. Weltbildverlag, Augsburg 1994, ISBN 3-89350-174-6, S. 287 f.