Der Fock-Operator ist ein effektiver Ein-Elektronen-Operator. Der Fock-Operator setzt sich zusammen aus dem Einteilchen-Hamiltonoperator für das -te Elektron und den Zwei-Elektronen-Operatoren (Coulomb- und Austausch-Operator). Für den Fall eines closed-shell-Systems (alle Spins sind gepaart) lautet der Fock-Operator:[1]

Dabei ist der aus den -Orbitalen erzeugte Fock-Operator für das -te Elektron. ist der Einteilchen-Hamiltonoperator für das -te Elektron:

mit der Elektronenmasse , der reduzierten Planck-Konstante , der Elementarladung und der elektrischen Feldkonstante .

In den in der theoretischen Chemie gebräuchlichen atomaren Einheiten vereinfacht sich der Hamilton-Operator, da alle auftretenden Konstanten gleich Eins gesetzt werden:[2]

Der erste Teil des Operators beschreibt die kinetische Energie des -ten Elektrons, der zweite Teil ist die Summe der Elektron–Kern Coulomb-Anziehung des -ten Elektrons mit dem Kern (welcher die Ladungszahl besitzen) mit dem Abstand des -ten-Elektrons vom Kern .

Der Coulomb-Operator definiert die Elektron-Elektron-Abstoßungsenergie des -ten Elektrons mit dem Elektron im j-ten Orbital. ist der Austauschoperator, der die Elektronen-Austauschenergie aufgrund der Antisymmetrie der Vielelektronenwellenfunktion definiert, er ist ein Artefakt der Slater-Determinante.[1]

Berechnung der Hartree-Fock Ein-Elektronen-Wellenfunktion

Bearbeiten

Das Berechnen der Hartree-Fock Ein-Elektronen-Wellenfunktion ist nun äquivalent zur Lösung der Eigenwertgleichung:[2]

 

  beschreibt dabei die Wellenfunktion des  -ten Elektrons im  -ten Orbital, sie werden auch als Hartree-Fock-Molekülorbitale bezeichnet.[2]

Da der Fock-Operator ein Einelektronenoperator ist, enthält er nicht die Elektronenkorrelationsenergie.[2]

Zusammenhang mit dem Gesamt-Hamiltonoperator

Bearbeiten

Der Gesamt-Hamiltonoperator kann durch eine Summe von Fock-Operatoren approximiert werden:[2]

 

Einzelnachweise

Bearbeiten
  1. a b Ira N. Levine: Quantum Chemistry. 4th ed. Prentice Hall, Englewood Cliffs NJ 1991, S. 403.
  2. a b c d e Bernd Hartke: I: Quantenchemie. (PDF) In: Theoretische Chemie. Abgerufen am 23. Juli 2018.