Frobenius-Methode

Lösungsverfahren für Differentialgleichungen
(Weitergeleitet von Fuchssche Differentialgleichung)

Die Frobenius-Methode, nach Ferdinand Georg Frobenius (1849–1917), ist eine Methode um Lösungen der gewöhnlichen Differentialgleichung

zu finden, wobei und als analytisch in einer Umgebung von vorausgesetzt werden. Die Idee ist es Lösungen in der Form einer verallgemeinerten Potenzreihe

anzusetzen und die unbekannten Koeffizienten durch Koeffizientenvergleich zu bestimmen. Der zentrale Satz wurde zuerst von Lazarus Immanuel Fuchs basierend auf Arbeiten von Karl Weierstraß bewiesen[1] und danach von Frobenius verallgemeinert[2].

Satz von Fuchs

Bearbeiten

Ohne Beschränkung der Allgemeinheit können wir   setzen. Gegeben sei die Differentialgleichung

 

wobei   bei 0 einen Pol maximal erster Ordnung und   bei 0 einen Pol maximal zweiter Ordnung hat. Sie können also in der Form

 

geschrieben werden, wobei die Reihen in einer Umgebung von 0 konvergieren.

Die charakteristischen Exponenten

 

sind die Lösungen der charakteristischen Gleichung

 

welche sich durch Koeffizientenvergleich für   in obiger Differentialgleichung ergibt,

und wir können sie gemäß   ordnen.

Dann gilt folgende Fallunterscheidung:

  • Ist   keine ganze Zahl, so existieren zwei Lösungen der Form
 
  • Ist   eine ganze Zahl, so existieren zwei Lösungen der Form
 

Der Konvergenzradius entspricht dem Minimum des Konvergenzradius der Reihen für   und  .

Auch die Umkehrung gilt: Gibt es zwei Lösungen der obigen Form, so hat   bei 0 einen Pol maximal erster Ordnung und   bei 0 einen Pol maximal zweiter Ordnung.

Eine Differentialgleichung mit meromorphen Koeffizienten, für die alle Singularitäten (inklusive  ) vom obigen Typ sind, wird als Fuchssche Differentialgleichung bezeichnet.

Verallgemeinerungen

Bearbeiten

Der Satz von Fuchs kann auf Differentialgleichungen höherer Ordnung und auf Systeme von Differentialgleichungen erster Ordnung verallgemeinert werden.

Anwendungen

Bearbeiten

Mit der Methode von Frobenius können folgende Differentialgleichungen gelöst werden:

Literatur

Bearbeiten

Einzelnachweise

Bearbeiten
  1. L. Fuchs: Zur Theorie der linearen Differentialgleichungen mit veränderlichen Coefficienten. In: Journal für die reine und angewandte Mathematik. 66 (1866) S. 121.
  2. G. Frobenius: Ueber die Integration der linearen Differentialgleichungen durch Reihen. In: Journal für die reine und angewandte Mathematik. 76 (1873), S. 214.