Die Hausdorff-Metrik, benannt nach dem Mathematiker Felix Hausdorff, misst den Abstand zwischen nichtleeren kompakten Teilmengen , eines metrischen Raums .
Anschaulich haben zwei kompakte Teilmengen einen geringen Hausdorff-Abstand, wenn es zu jedem Element der einen Menge ein Element der anderen Menge gibt, zu dem dieses einen geringen Abstand hat.
Definition
BearbeitenAls Hilfsmittel definiert man den Abstand zwischen einem Punkt und einer nichtleeren kompakten Teilmenge unter Rückgriff auf die Metrik des Raums als
Dann definiert man den Hausdorff-Abstand zwischen zwei nichtleeren kompakten Teilmengen und als
Man kann zeigen, dass in der Tat eine Metrik auf der Menge aller kompakten Teilmengen von ist.
Äquivalent kann man den Hausdorff-Abstand definieren als
- ,[1]
wobei
- ,
dies ist die Menge aller Punkte mit einem Abstand von höchstens zur Menge .
Anwendungen
BearbeitenIn der Theorie der iterierten Funktionensysteme werden Fraktale als Folgengrenzwerte im Sinne der Hausdorff-Metrik erzeugt.
Siehe auch
BearbeitenLiteratur
Bearbeiten- M. I. Voitsekhovskii: Hausdorff metric. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 1-55608-010-7 (englisch, encyclopediaofmath.org).
Einzelnachweise
Bearbeiten- ↑ James Munkres: Topology. Prentice Hall, 1999, ISBN 0-13-181629-2, S. 280–281 (google.com).