Hemmungskontrolle (Reaktionshemmung) ist ein kognitiver Prozess (genauer Exekutive Funktion), der es einer Person ermöglicht, ihre Impulse und natürlichen, gewohnheitsmäßigen oder dominanten Verhaltensreaktionen auf Reize (auch als präpotente Reaktionen bezeichnet) zu hemmen, um ein angemesseneres Verhalten auszuwählen, das mit dem Erreichen ihrer Ziele vereinbar ist.[1][2] Selbstkontrolle ist ein wichtiger Aspekt der Hemmungskontrolle.[1][2][3][4][5] Um beispielsweise während einer Diät die natürliche Verhaltensreaktion, Kuchen zu essen, wenn man Heißhunger darauf hat, erfolgreich zu unterdrücken, ist der Einsatz von Hemmungskontrolle erforderlich.[2]

Der Präfrontale Cortex, der Nucleus caudatus und der Nucleus subthalamicus regulieren bekanntermaßen die Hemmkontrolle der Kognition.[2][3] Die Hemmkontrolle ist sowohl bei Suchterkrankungen, als auch bei ADGS beeinträchtigt.[2][3][6] Bei gesunden Erwachsenen und Patienten mit ADHS verbessert sich die Hemmkontrolle kurzfristig durch niedrige (therapeutische) Dosen von Methylphenidat oder Amphetamin.[1][7] Die Hemmkontrolle kann auch langfristig durch regelmäßiges aerobes Training verbessert werden.[2][4][5]

Ein Hemmkontrolltest ist ein neuropsychologischer Test, der die Fähigkeit einer Person misst, ihre natürliche, gewohnheitsmäßige oder dominante Verhaltensreaktion auf einen Reiz außer Kraft zu setzen, um adaptiveres, zielorientierteres Verhalten zu zeigen.[1][2][3] Zu den neuropsychologischen Tests zur Messung der Hemmkontrolle gehören der Stroop-Effekt, Simon-Effekt, Aufgaben zur Belohnungsverzögerung und Stoppsignal-Aufgaben.[2]

Geschlechtsunterschiede

Bearbeiten

Frauen neigen dazu, eine größere basale Kapazität zur Hemmung unerwünschter oder gewohnheitsmäßiger Verhaltensweisen zu haben und reagieren im Vergleich zu Männern anders auf modulierende Umweltfaktoren.[8][9] Beispielsweise verbessert das Hören von Musik tendenziell die Reaktionshemmungsrate bei Frauen signifikant, verringert jedoch die Reaktionshemmungsrate bei Männern.[8]

Einzelnachweise

Bearbeiten
  1. a b c d Ilieva IP, Hook CJ, Farah MJ: Prescription Stimulants' Effects on Healthy Inhibitory Control, Working Memory, and Episodic Memory: A Meta-analysis. In: J Cogn Neurosci. 27. Jahrgang, Nr. 6, 2015, S. 1–21, doi:10.1162/jocn_a_00776, PMID 25591060 (englisch, upenn.edu).
  2. a b c d e f g h Diamond A: Executive functions. In: Annu Rev Psychol. 64. Jahrgang, 2013, S. 135–168, doi:10.1146/annurev-psych-113011-143750, PMID 23020641, PMC 4084861 (freier Volltext) – (englisch): “Core EFs are inhibition [response inhibition (self-control–resisting temptations and resisting acting impulsively) and interference control (selective attention and cognitive inhibition)], working memory, and cognitive flexibility (including creatively thinking “outside the box,” seeing anything from different perspectives, and quickly and flexibly adapting to changed circumstances). ... EFs and prefrontal cortex are the first to suffer, and suffer disproportionately, if something is not right in your life. They suffer first, and most, if you are stressed (Arnsten 1998, Liston et al. 2009, Oaten & Cheng 2005), sad (Hirt et al. 2008, von Hecker & Meiser 2005), lonely (Baumeister et al. 2002, Cacioppo & Patrick 2008, Campbell et al. 2006, Tun et al. 2012), sleep deprived (Barnes et al. 2012, Huang et al. 2007), or not physically fit (Best 2010, Chaddock et al. 2011, Hillman et al. 2008). Any of these can cause you to appear to have a disorder of EFs, such as ADHD, when you do not. You can see the deleterious effects of stress, sadness, loneliness, and lack of physical health or fitness at the physiological and neuroanatomical level in prefrontal cortex and at the behavioral level in worse EFs (poorer reasoning and problem solving, forgetting things, and impaired ability to exercise discipline and self-control). ...
    EFs can be improved (Diamond & Lee 2011, Klingberg 2010). ... At any age across the life cycle EFs can be improved, including in the elderly and in infants. There has been much work with excellent results on improving EFs in the elderly by improving physical fitness (Erickson & Kramer 2009, Voss et al. 2011) ... Inhibitory control (one of the core EFs) involves being able to control one’s attention, behavior, thoughts, and/or emotions to override a strong internal predisposition or external lure, and instead do what’s more appropriate or needed. Without inhibitory control we would be at the mercy of impulses, old habits of thought or action (conditioned responses), and/or stimuli in the environment that pull us this way or that. Thus, inhibitory control makes it possible for us to change and for us to choose how we react and how we behave rather than being unthinking creatures of habit. It doesn’t make it easy. Indeed, we usually are creatures of habit and our behavior is under the control of environmental stimuli far more than we usually realize, but having the ability to exercise inhibitory control creates the possibility of change and choice. ... The subthalamic nucleus appears to play a critical role in preventing such impulsive or premature responding (Frank 2006).”
  3. a b c d Malenka RC, Nestler EJ, Hyman SE: Molecular Neuropharmacology: A Foundation for Clinical Neuroscience. Hrsg.: Sydor A, Brown RY. 2nd Auflage. McGraw-Hill Medical, New York 2009, ISBN 978-0-07-148127-4, Chapter 13: Higher Cognitive Function and Behavioral Control, S. 313–321 (englisch): “Executive function, the cognitive control of behavior, depends on the prefrontal cortex, which is highly developed in higher primates and especially humans. Working memory is a short-term, capacity-limited cognitive buffer that stores information and permits its manipulation to guide decision-making and behavior. These diverse inputs and back projections to both cortical and subcortical structures put the prefrontal cortex in a position to exert what is often called “top-down” control or cognitive control of behavior. The prefrontal cortex receives inputs not only from other cortical regions, including association cortex, but also, via the thalamus, inputs from subcortical structures subserving emotion and motivation, such as the amygdala (Chapter 14) and ventral striatum (or nucleus accumbens; Chapter 15). In conditions in which prepotent responses tend to dominate behavior, such as in drug addiction, where drug cues can elicit drug seeking (Chapter 15), or in attention deficit hyperactivity disorder (ADHD; described below), significant negative consequences can result. ADHD can be conceptualized as a disorder of executive function; specifically, ADHD is characterized by reduced ability to exert and maintain cognitive control of behavior. Compared with healthy individuals, those with ADHD have diminished ability to suppress inappropriate prepotent responses to stimuli (impaired response inhibition) and diminished ability to inhibit responses to irrelevant stimuli (impaired interference suppression). Functional neuroimaging in humans demonstrates activation of the prefrontal cortex and caudate nucleus (part of the striatum) in tasks that demand inhibitory control of behavior. Early results with structural MRI show thinning of the cerebral cortex in ADHD subjects compared with age-matched controls in prefrontal cortex and posterior parietal cortex, areas involved in working memory and attention.”
  4. a b Guiney H, Machado L: Benefits of regular aerobic exercise for executive functioning in healthy populations. In: Psychon Bull Rev. 20. Jahrgang, Nr. 1, Februar 2013, S. 73–86, doi:10.3758/s13423-012-0345-4, PMID 23229442 (englisch): “Executive functions are strategic in nature and depend on higher-order cognitive processes that underpin planning, sustained attention, selective attention, resistance to interference, volitional inhibition, working memory, and mental flexibility ... Data to date from studies of aging provide strong evidence of exercise-linked benefits related to task switching, selective attention, inhibition of prepotent responses, and working memory capacity; furthermore, cross-sectional fitness data suggest that working memory updating could potentially benefit as well. In young adults, working memory updating is the main executive function shown to benefit from regular exercise, but cross-sectional data further suggest that task-switching and post-error performance may also benefit. In children, working memory capacity has been shown to benefit, and cross-sectional data suggest potential benefits for selective attention and inhibitory control. ... Support for the idea that higher levels of aerobic activity may be associated with superior brain structure has been gained through cross-sectional studies in older adults and children (for a recent review, see Voss, Nagamatsu et al., 2011). ... only those in the aerobic exercise group exhibited improved connectivity between the left and right prefrontal cortices, two areas that are crucial to the effective functioning of the fronto-executive network. ... Together, these studies provide evidence that regular aerobic exercise benefits control over responses during selective attention in older adults. ... aerobic fitness is a good predictor of performance on tasks that rely relatively heavily on inhibitory control over prepotent responses (e.g., Colcombe et al., 2004, Study 1; Prakash et al., 2011) and also that regular aerobic exercise improves performance on such tasks ... Overall, the results from the span and Sternberg tasks suggest that regular exercise can also confer benefits for the volume of information that children and older adults can hold in mind at one time.”
  5. a b Buckley J, Cohen JD, Kramer AF, McAuley E, Mullen SP: Cognitive control in the self-regulation of physical activity and sedentary behavior. In: Front Hum Neurosci. 8. Jahrgang, 2014, S. 747, doi:10.3389/fnhum.2014.00747, PMID 25324754, PMC 4179677 (freier Volltext) – (englisch): “Recent theory (e.g., Temporal Self-Regulation Theory; Hall and Fong, 2007, 2010, 2013) and evidence suggest that the relation between physical activity and cognitive control is reciprocal (Daly et al., 2013). Most research has focused on the beneficial effects of regular physical activity on executive functions-the set of neural processes that define cognitive control. Considerable evidence shows that regular physical activity is associated with enhanced cognitive functions, including attention, processing speed, task switching, inhibition of prepotent responses and declarative memory (for reviews see Colcombe and Kramer, 2003; Smith et al., 2010; Guiney and Machado, 2013; McAuley et al., 2013). Recent research demonstrates a dose-response relationship between fitness and spatial memory (Erickson et al., 2011) ... The effects of physical activity on cognitive control appear to be underpinned by a variety of brain processes including: increased hippocampal volume, increased gray matter density in the prefrontal cortex (PFC), upregulation of neurotrophins and greater microvascular density ... Together, this research suggests that an improvement in control processes, such as attention and inhibition or interference control, is associated with an improvement in self-regulation of physical activity. ... Increasingly, research shows that cognitive control abilities are malleable, and that cognitive training can produce positive cognitive outcomes and improvements in daily function (Willis et al., 2006; Hertzog et al., 2008) that can have long-lasting effects (Rebok et al., 2014). Approaches to cognitive training are numerous and varied; however, the relative superiority of different approaches with regard to training and transfer continue to be debated.”
  6. Koob GF, Volkow ND: Neurocircuitry of addiction. In: Neuropsychopharmacology. 35. Jahrgang, Nr. 1, 2010, S. 217–238, doi:10.1038/npp.2009.110, PMID 19710631, PMC 2805560 (freier Volltext) – (englisch): “Animal and human imaging studies have revealed ... a key role in the preoccupation/anticipation stage for a widely distributed network involving the orbitofrontal cortex-dorsal striatum, prefrontal cortex, basolateral amygdala, hippocampus, and insula involved in craving and the cingulate gyrus, dorsolateral prefrontal, and inferior frontal cortices in disrupted inhibitory control.”
  7. Spencer RC, Devilbiss DM, Berridge CW: The Cognition-Enhancing Effects of Psychostimulants Involve Direct Action in the Prefrontal Cortex. In: Biol. Psychiatry. 77. Jahrgang, Nr. 11, Juni 2015, S. 940–950, doi:10.1016/j.biopsych.2014.09.013, PMID 25499957, PMC 4377121 (freier Volltext) – (englisch): “Collectively, this evidence indicates that at low, clinically relevant doses, psychostimulants are devoid of the behavioral and neurochemical actions that define this class of drugs and instead act largely as cognitive enhancers (improving PFC-dependent function). This information has potentially important clinical implications as well as relevance for public health policy regarding the widespread clinical use of psychostimulants and for the development of novel pharmacologic treatments for attention-deficit/hyperactivity disorder and other conditions associated with PFC dysregulation. ... In particular, in both animals and humans, lower doses maximally improve performance in tests of working memory and response inhibition, whereas maximal suppression of overt behavior and facilitation of attentional processes occurs at higher doses.”
  8. a b Mansouri FA, Fehring DJ, Gaillard A, Jaberzadeh S, Parkington H: Sex dependency of inhibitory control functions. In: Biol Sex Differ. 7. Jahrgang, 2016, S. 11, doi:10.1186/s13293-016-0065-y, PMID 26862388, PMC 4746892 (freier Volltext) – (englisch): “Inhibition of irrelevant responses is an important aspect of cognitive control of a goal-directed behavior. Females and males show different levels of susceptibility to neuropsychological disorders such as impulsive behavior and addiction, which might be related to differences in inhibitory brain functions. ... Here, we show a significant difference in executive control functions and their modulation by contextual factors between females and males”
  9. Helen Driscoll, Ann Zinkivskay, Kelly Evans, Anne Campbell: Gender differences in social representations of aggression: The phenomenological experience of differences in inhibitory control? In: British Journal of Psychology. 97. Jahrgang, Nr. 2, 1. Mai 2006, ISSN 2044-8295, S. 139–153, doi:10.1348/000712605X63073, PMID 16613646 (englisch).