Hyperpolarisierbarkeit
Hyperpolarisierbarkeit ist eine Eigenschaft von Molekülen, die eine große Bedeutung für die Nichtlineare Optik hat. Dabei sind die induzierten Dipolmomente nicht mehr proportional zur elektrischen Feldstärke der einfallenden Lichtwelle.
Prinzip
BearbeitenIn einem makroskopischen System ist die induzierte Polarisation eine Funktion der elektrischen Suszeptibilität und des elektrischen Felds :
Bei einem starken elektrischen Feld, wie es von einem Laser erzeugt wird, muss die induzierte Polarisation als Potenzreihe wiedergegeben werden:
wobei und die nichtlinearen Effekte zweiter und dritter Ordnung beschreiben. Nur wenn das Material in einer nicht-centrosymmetrischen Raumgruppe kristallisiert, ist der Term zweiter Ordnung ungleich Null.
Wenn man dieses makroskopische Konzept auf das mikroskopische (molekulare) Niveau überträgt, dann erhält man eine ähnliche Potenzreihe für die Polarisierbarkeit:
wobei die Variablen das molekulare Achsensystem aufspannen. ist die Hyperpolarisierbarkeit zweiter Ordnung. Sie ist nur dann ungleich Null, wenn das Molekül nicht-centrosymmetrisch ist. Sowohl bei der linearen Polarisierbarkeit als auch bei den Hyperpolarisierbarkeiten und handelt es sich um frequenzabhängige Tensoren.
Als Prototyp gelten Donor-Akzeptor-Moleküle wie p-Nitroanilin, weil sich hier die Elektronendichte durch das angelegte symmetrische Feld leicht asymmetrisch verschieben lässt. Eine noch größere Hyperpolarisierbarkeit findet man in ausgedehnten -Systemen, wie sie in organischen Farbstoffen vorkommen.
In CODATA 2018 werden atomare Einheiten der ersten und zweiten Hyperpolarisierbarkeit festgelegt:
- mit a0 = Bohrscher Radius, e = Elementarladung des Elektrons und Eh = Hartree-Energie.
Technik
BearbeitenErste exakte Bestimmungen der Hyperpolarisierbarkeit erfolgten durch A. David Buckingham mit Hilfes des Kerr-Effekts.[2] Heute vielfach verwendete Methoden sind Messungen der Hyper-Rayleigh-Streuung (HRS) und der feldinduzierten Frequenzverdopplung (englisch electric-field-induced second-harmonic generation, EFISH).[3] Computerberechnungen auf Basis der Dichtefunktionaltheorie und der Hartree-Fock-Methode verwenden häufig den SOS-Ansatz („sum over states“).[4]
Literatur
Bearbeiten- Eintrag zu hyperpolarizability (of nth order). In: IUPAC (Hrsg.): Compendium of Chemical Terminology. The “Gold Book”. doi:10.1351/goldbook.HT07053 – Version: 2.3.3.
- D. R. Kanis, M. A. Ratner, T. J. Marks: Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. In: Chemical Reviews. Band 94, Nr. 1, 1994, S. 195–242, doi:10.1021/cr00025a007 (englisch).
Einzelnachweise
Bearbeiten- ↑ A. Volkov, C. Gatti, Y. Abramov, P. Coppens: Evaluation of net atomic charges and atomic and molecular electrostatic moments through topological analysis of the experimental charge density. In: Acta Crystallographica Section A. Band 56, Nr. 3, 2000, S. 252–258, doi:10.1107/S0108767300001628.
- ↑ A. D. Buckingham, P. Hibbard: Polarizability and Hyperpolarizability of the Helium Atom. In: Symposia of the Faraday Society. Band 2, 1968, S. 41–47, doi:10.1039/SF9680200041.
- ↑ P. Kaatz, E. A. Donley, D. P. Shelton: A comparison of molecular hyperpolarizabilities from gas and liquid phase measurements. In: The Journal of Chemical Physics. Band 108, 1998, S. 849–856, doi:10.1063/1.475448 (Online [PDF]).
- ↑ J. P. Coe, M. J. Paterson: Approaching exact hyperpolarizabilities via sum-over-states Monte Carlo configuration interaction. In: The Journal of Chemical Physics. Band 141, Nr. 12, 2014, S. 124118, doi:10.1063/1.4896229, arxiv:1409.7276.