Ein Einundzwanzigeck, auch 21‐Eck oder Ikosihenagon (von altgriechisch εἰκοσιείς eikosieís, deutsch ‚einundzwanzig‘ und γωνία gōnía, deutsch ‚Winkel, Ecke‘),[1] ist ein Polygon mit 21 Seiten und 21 Ecken.

Regelmäßiges Einundzwanzigeck
Regelmäßiges Einundzwanzigeck

Regelmäßiges 21‐Eck

Bearbeiten

Das regelmäßige 21‐Eck, bei dem alle Seiten gleich lang sind und alle Eckpunkte gedanklich auf einem gemeinsamen Umkreis liegen, ist nach Carl Friedrich Gauß und Pierre-Laurent Wantzel kein konstruierbares Polygon, sodass ein regelmäßiges 21‐Eck allein mit Zirkel und Lineal nicht konstruierbar ist.

Diagonalen

Bearbeiten

Allgemein gilt für die Anzahl   der Diagonalen in einem  ‐Eck

 

somit besitzt das 21‐Eck 189 Diagonalen. Für jede der 21 Ecken, an der eine Diagonale anfangen kann, gibt es 18 mögliche Endpunkte. Diese Anzahl muss aber noch durch 2 geteilt werden, damit keine Diagonale doppelt gezählt wird.

So ergeben sich die genannten   Diagonalen.

Größen

Bearbeiten
Größen eines regelmäßigen 21‐Ecks
Innenwinkel  

 

Zentriwinkel

(Mittelpunktswinkel)

 
Seitenlänge  
Umkreisradius  
Inkreisradius  
Höhe  
Flächeninhalt  

Mathematische Zusammenhänge

Bearbeiten

Innenwinkel

Bearbeiten

Der Innenwinkel   wird von zwei benachbarten Seiten der Länge   eingeschlossen.

 

Zentriwinkel

Bearbeiten

Der Zentriwinkel oder Mittelpunktswinkel   wird von zwei benachbarten Umkreisradien der Länge   eingeschlossen.

 

Seitenlänge

Bearbeiten

Die Seitenlänge   errechnet sich zu

  .

Umkreisradius

Bearbeiten

Der Radius   des Umkreises ergibt sich durch Umformen der Formel für die Seitenlänge   zu

  .

Inkreisradius

Bearbeiten

Der Inkreisradius   ist die Höhe eines gleichschenkligen Teildreiecks mit den beiden Schenkeln gleich dem Umkreisradius   und der Grundlinie gleich der Seitenlänge  :

 

Die Höhe   eines regelmäßigen 21‐Ecks ergibt sich aus der Summe von Inkreisradius   und Umkreisradius  :

 

Flächeninhalt

Bearbeiten

Der Flächeninhalt eines Dreiecks berechnet sich allgemein zu  . Für die Berechnung des 21‐Ecks werden die Ergebnisse der Seitenlänge   und des Inkreisradius   herangezogen, worin   für die Höhe   eingesetzt wird:

 ,
 ,  daraus folgt für die Fläche eines Teildreiecks
 ,  zusammengefasst ergibt sich
   und für die Fläche des ganzen 21‐Ecks
  .

Geometrische Konstruktionen

Bearbeiten

Ein regelmäßiges 21‐Eck ist, wie im gleichnamigen Absatz begründet, nicht mit Zirkel und Lineal konstruierbar. Verwendet man jedoch ein zusätzliches Hilfsmittel wie z. B. den Tomahawk zur exakten Dreiteilung (Trisektion) eines Winkels oder ein spezielles Kurvenlineal mit der Kurvenform der archimedischen Spirale bzw. der Quadratrix des Hippias für die Teilung des 90-Grad-Winkels in   gleich große Winkelweiten, ist eine exakte Lösung machbar.

Um den Tomahawk für die Bestimmung des Zentriwinkels nutzen zu können, bedarf es dafür zuerst einer evtl. komplizierten Konstruktion mindestens einer geeigneten Winkelweite, wie im Beispiel Siebeneck von Andrew M. Gleason zu sehen ist.

Dagegen bietet sowohl die archimedische Spirale als auch die Quadratrix des Hippias einen einfachen und kurzen Weg – er führt über die Teilung einer Strecke in   gleich lange Teile und die anschließende Projektion von vier dieser Teile in die gewählte Kurve − zum Auffinden des gesuchten Zentriwinkels.

Bei vorgegebenem Umkreis

Bearbeiten

Die Konstruktion des 21‐Ecks bei vorgegebenem Umkreis (Bild 1) nutzt als Konstruktionselement, wie auch im Dreizehneck zu sehen ist, die Quadratrix des Hippias als zusätzliches Hilfsmittel.

Nach dem Zeichnen des Quadrates z. B. mit der Seitenlänge   und der Konstruktion der speziellen Kurve, der sogenannten Quadratrix des Hippias,[2] mit der Parameterdarstellung  :[3][4]

 

wird die Strecke   in einundzwanzig gleich lange Abschnitte mithilfe der Streckenteilung geteilt. Aus Gründen der Übersichtlichkeit sind in der Zeichnung nur die relevanten Punkte dargestellt.

Der Zentriwinkel des 21‐Ecks ergibt sich aus   aber die Quadratrix des Hippias unterteilt nur die Winkel ab   bis   in gleich große Winkel. Daraus folgt, ein Einundzwanzigstel der Strecke   kann nur ein Einundzwanzigstel des Winkels   erzielen. Deshalb wird wegen der Berechnung des Zentriwinkels   aus dem Umkreis mit seinen   das Vierfache eines Einundzwanzigstels, d. h. der Teilungspunkt   der Strecke   zur Konstruktion des Zentriwinkels   genutzt. Dieser entsteht nach der Konstruktion einer Parallelen zu   ab   bis zur Kurve der Quadratrix, dabei ergibt sich der Punkt  . Nun zieht man eine Halbgerade ab dem Winkelscheitel   durch   bis zum Umkreis.

Somit ergibt sich der Zentriwinkel   und auf dem Umkreis der zweite Eckpunkt  . Die Länge der Strecke   ist die exakte Seitenlänge   des regelmäßigen 21‐Ecks mit vorgegebenem Umkreis.

 
Bild 1: Regelmäßiges 21‐Eck mit vorgegebenem Umkreis als exakte Konstruktion mit der Quadratrix des Hippias als zusätzlichem Hilfsmittel
 
Bild 2: Regelmäßiges 21‐Eck mit vorgegebener Seitenlänge (GH), mit der Quadratrix des Hippias und der zentrischen Streckung bzw. der Ähnlichkeit der zwei Dreiecke   und   zueinander.

Bei vorgegebener Seitenlänge

Bearbeiten

Die Konstruktion des 21‐Ecks bei vorgegebener Seitenlänge   wie im (Bild 2) dargestellt, ist quasi die Weiterführung der Konstruktion des 21‐Ecks Bei vorgegebenem Umkreis (Bild 1). Sie nutzt ebenfalls als Konstruktionselement die Quadratrix des Hippias als zusätzliches Hilfsmittel. Die vorgegebene Seitenlänge   ist, je nach Betrachtungsweise, als zentrische Streckung des Umkreises des 21‐Ecks[5] mit sogenanntem negativen Streckungsfaktor bzw. als geometrische Ähnlichkeit zweier Dreiecke eingearbeitet.

Bei Berücksichtigung, dass die Punkte   und   im Bild 2 den Punkten   und   im Bild 1 entsprechen, kann die Konstruktionsbeschreibung des 21‐Ecks Bei vorgegebenem Umkreis vollständig übernommen werden.

Es bedarf nun lediglich einer Winkelhalbierenden   des Zentriwinkels   darauf eines Kreises mit dem Durchmesser   gleich der gegebenen Seitenlänge   um Punkt   und schließlich zweier Parallelen zu   je eine ab   und   bis zu den Winkelschenkeln des Zentriwinkels.

Die sich somit ergebenden Schnittpunkte   und   sind die ersten beiden Eckpunkte und die Strecke   der exakte Umkreisradius des 21‐Ecks mit vorgegebener Seitenlänge.

Regelmäßige überschlagene 21‐Ecke

Bearbeiten

Ein regelmäßiges überschlagenes 21‐Eck ergibt sich, wenn beim Verbinden der einundzwanzig Eckpunkte jedes Mal mindestens einer übersprungen wird und die somit erzeugten Sehnen gleich lang sind. Notiert werden solche regelmäßigen Sterne mit Schläfli-Symbolen  , wobei   die Anzahl der Eckpunkte angibt und jeder  -te Punkt verbunden wird.

Es gibt nur fünf regelmäßige Einundzwanzigstrahlsterne.

Die „Sterne“ mit den Symbolen {21/3} und {21/18} sind regelmäßige Siebenecke, {21/6} und {21/15} sowie {21/9} und {21/12} sind regelmäßige Heptagramme, {21/7} und {21/14} sind gleichseitige Dreiecke.

Bearbeiten
Wiktionary: Einundzwanzigeck – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

Bearbeiten
  1. Henry George Liddell, Robert Scott: A Greek-English Lexicon. Abgerufen am 2. Juli 2024.
  2. Rieke Deimer: Die Quadratrix. In: Mathematik / Algebraische Geometrie, Ausgewaehlte hoehere Kurven WS2016-17. Universität Mainz, 6. Januar 2017, abgerufen am 8. September 2018.
  3. Hans-Wolfgang Henn: Elementare Geometrie und Algebra. Verlag Vieweg+Teubner, 2003, S. 45–48. Seite 46 ff. Quadratrix (Auszug (Google)), abgerufen am 8. September 2018.
  4. Horst Hischer: Mathematik in der Schule 32 (1994) 5. Geschichte der Mathematik als didaktischer Aspekt (2). Lösung klassischer Probleme. S. 279 ff., abgerufen am 8. September 2018.
  5. Friedhelm Kürpig Oliver Niewiadomski: Grundlehre Geometrie Begriffe, Lehrsätze, Grundkonstruktionen; Verlag Friedr. Vieweg & Sohn, 1992 Seite 61 Zentrische Streckung (Auszug (Google)), abgerufen am 8. September 2018.