Kemnitz-Vermutung

mathematischer Satz

Die Kemnitz-Vermutung ist ein inzwischen bewiesenes Theorem der additiven Zahlentheorie. Sie besagt, dass jede Menge von Gitterpunkten in der Ebene eine große Teilmenge hat, deren Schwerpunkt wieder ein Punkt des Gitters ist.

Formulierung

Bearbeiten

Sei   eine natürliche Zahl und   eine Menge von   Punkten eines Gitters. Dann existiert eine Teilmenge   der Größe  , sodass der Schwerpunkt von   ein Punkt des Gitters ist.

Geschichte

Bearbeiten

Die Vermutung wurde 1983 von Arnfried Kemnitz formuliert.[1] Sie ist eine Verallgemeinerung des Theorems von Erdös-Ginzburg-Ziv, das im eindimensionalen Fall besagt, dass jede Menge von   ganzen Zahlen eine Teilmenge der Größe   hat, deren arithmetisches Mittel wieder eine ganze Zahl ist.[2] Im Jahr 2000 bewies Lajos Rónyai eine schwächere Behauptung für   Gitterpunkte.[3] 2003 wurde die Vermutung von Christian Reiher unter der Benutzung des Chevalley-Warning-Theorems bewiesen.[4] Unabhängig davon gelang auch Carlos di Fiore ein Beweis.

Einzelnachweise

Bearbeiten
  1. A. Kemnitz: On a lattice point problem. In: Ars Combinatorica. 16b, 1983, S. 151–160.
  2. Paul Erd\Hos, A. Ginzburg, A. Ziv: A theorem in additive number theory. 1961 (zbmath.org [abgerufen am 8. April 2021]).
  3. Lajos Rónyai: On a Conjecture of Kemnitz. In: Combinatorica. Band 20, Nr. 4, 1. April 2000, ISSN 1439-6912, S. 569–573, doi:10.1007/s004930070008.
  4. Christian Reiher: On Kemnitz' Conjecture Concerning Lattice Points in the Plane. In: The Ramanujan Journal. Band 13, Nr. 1-3, Juni 2007, ISSN 1382-4090, S. 333–337, doi:10.1007/s11139-006-0256-y, arxiv:1603.06161.