Sei eine differenzierbare Mannigfaltigkeit und ihr Tangentialraum am Punkt . Dann ist der Kotangentialraum definiert als der Dualraum von . Das heißt, der Kotangentialraum besteht aus allen Linearformen auf dem Tangentialraum .
Im Folgenden wird ein anderer Zugang dargestellt, bei dem der Dualraum direkt definiert wird, ohne Bezugnahme auf den Tangentialraum.
Diesem Zugang liegt folgende Idee zugrunde. Man legt eine Kurve in die Mannigfaltigkeit und macht Aussagen darüber, wie sich Werte einer Funktion, die ebenfalls auf der Mannigfaltigkeit definiert ist, beim Durchlaufen der Kurve, speziell in der Umgebung eines Punktes p, verändern. Man betrachtet das Geschehen im Bildbereich einer Kartenabbildung.
Es sei eine -dimensionale differenzierbare Mannigfaltigkeit. Weiter seien
die Menge aller glatten Kurven durch
und die Menge aller glatten Funktionen, die in einer Umgebung von definiert sind:
.
Bezeichnet man mit folgende Äquivalenzrelation auf
Umgebung von mit ,
dann ist der Faktorraum der Vektorraum der Keime über .
Über
wird dann eine formale Paarung definiert, die in der ersten Komponente linear ist. Nun ist
Mit der obigen Definition kann man auf eine Äquivalenzrelation wie folgt definieren:
Der Faktorraum
beschreibt gerade den -dimensionalen Tangentialraum.
Bilden nun eine Basis von , so kann man zu jedem Basisvektor einen Repräsentanten auswählen. ist eine differenzierbare Karte und für jedes kann man eine Kurve
definieren, wobei der -te Einheitsvektor im ist. Wegen
sind und dual zueinander und man schreibt für auch .
John M. Lee: Introduction to Smooth Manifolds (= Graduate Texts in Mathematics 218). Springer-Verlag, New York NY u. a. 2003, ISBN 0-387-95448-1.
R. Abraham, Jerrold E. Marsden, T. Ratiu: Manifolds, tensor analysis, and applications (= Applied mathematical sciences 75). 2. Auflage. Springer, New York NY u. a. 1988, ISBN 0-387-96790-7.