Länge (Algebra)
Größe eines Moduls in der linearen Algebra
Im mathematischen Teilgebiet der Algebra ist die Länge ein Maß für die Größe eines Moduls.
Definition
BearbeitenEs sei ein Modul über einem Ring . Die Länge von ist das Supremum der Längen von Ketten von Untermoduln der Form[1]
Die Länge wird oft mit oder bezeichnet.
Eigenschaften
Bearbeiten- Nur der Nullmodul hat Länge 0.
- Ein Modul ist genau dann einfach, wenn seine Länge 1 ist.
- Ein Modul hat genau dann endliche Länge, wenn er artinsch und noethersch ist.[2]
- Die Länge ist additiv auf kurzen exakten Folgen: Ist
- exakt, so ist ; sind zwei dieser Zahlen endlich, so ist es auch die dritte.
- Eine Kompositionsreihe ist eine Kette von Untermodulen, die einfache Subquotienten besitzt. Die Länge jeder Kompositionsreihe ist gleich der Länge des Moduls.
Beispiele
Bearbeiten- Vektorräume haben genau dann endliche Länge, wenn sie endlichdimensional sind; in diesem Fall ist ihre Länge gleich ihrer Dimension.
- Der -Modul hat unendliche Länge: Für jede natürliche Zahl ist
- eine Kette von Untermoduln der Länge .
Literatur
Bearbeiten- Henning Krause, Claus Michael Ringel ed.: Infinite length modules. Birkhäuser, Basel 2000, ISBN 3-7643-6413-0.
Einzelnachweise
Bearbeiten- ↑ Siegfried Bosch: Algebra, 6. Auflage 2006, Springer-Verlag, ISBN 3-540-40388-4, S. 72.
- ↑ Henning Krause, Claus Michael Ringel ed.: Infinite length modules. Birkhäuser, Basel 2000, ISBN 3-7643-6413-0, S. 3.