Die lineare Schadensakkumulation dient zur Beurteilung des Einflusses eines Lastkollektivs auf die Lebensdauer eines Bauteils und geht auf die Ingenieure Arvid Palmgren[1] (1924), B. F. Langer[2] (1937) und Milton Miner[3] (1945) zurück.

Beschreibung

Bearbeiten
 
Lineare Schadensakkumulation

Im Normalfall unterliegt ein Bauteil nicht nur einer Schwingbelastung mit konstanten Amplituden, d. h., einem rechteckigen Belastungskollektiv wie es zum Beispiel im Wöhlerversuch verwendet wird, sondern die Belastung ist in ihrer Höhe veränderlich. Zur Berechnung der Lebensdauer wird das Amplitudenkollektiv in einzelne Rechteckkollektive mit konstanter Amplitude   und einer Teilschwingspielzahl   unterteilt (getreppt). Nach dem Verfahren der linearen Schadensakkumulation wird nun für jedes Teilkollektiv eine Teilschädigung berechnet, indem die Teilschwingspielzahl durch die maximal ertragbare Schwingspielzahl   bei   einer Wöhlerlinie geteilt wird. Die Teilschädigungen aller Teilkollektive werden aufsummiert und ergeben die Gesamtschädigung D des Bauteils.

 

Überschreitet die Schädigung den Wert 1, so ist mit einem Bruch bzw. Anriss im Bauteil unter dem betrachteten Belastungskollektiv zu rechnen.

Anschaulich gesprochen ist es nach der linearen Schadensakkumulation egal, auf welchem Lastniveau ein bestimmter Bruchteil der maximal ertragbaren Schwingspielzahl verbraucht wurde. Die Schädigung eines Teilkollektivs   kann umgerechnet werden in die eines anderen Teilkollektivs   durch

 .

Wenn man sich eine Zwei-Stufen-Belastung vorstellt, ist es nach der linearen Schadensakkumulation egal, in welcher Reihenfolge die Belastungen kommen. Reihenfolgeeffekte können also nicht erklärt werden.[4]

Modifikationen der Miner-Regel

Bearbeiten

Es gibt zahlreiche Modifikationen der Miner-Regel, die Schädigungen von Schwingungen unterhalb der sogenannten Dauerfestigkeit bewerten. Hierbei wird immer der Verlauf der Wöhlerlinie, der die Teilkollektive gegenübergestellt werden, modifiziert.

Die ursprüngliche Miner-Regel wird als Original-Miner bezeichnet und berücksichtigt keine Teilkollektive deren Lastamplituden unterhalb der Dauerfestigkeitsgrenze liegen. Ein Auslegen von Bauteilen mit dieser Regel kann zu einer Unterdimensionierung führen, da auch Schwingspiele unterhalb der sogenannten Dauerfestigkeit Schädigungen hervorrufen können.

 

Als konservative Variante gilt die elementare Miner-Regel nach Palmgren. Hierbei wird ein Abknicken der Wöhlerlinie komplett vernachlässigt, so dass alle Teilkollektive schädigend wirken.

 

Eine weitere wichtige Modifikation ist die Miner-Regel modifiziert nach Haibach. Hierbei wird ein Absinken der Dauerfestigkeit durch eine veränderte Neigung   berücksichtigt:

 ,  

Von J. Liu und H. Zenner (Miner-Regel modifiziert nach Liu-Zenner) wurde eine Drehung der Wöhlerlinie in Höhe des Kollektivhöchstwertes und anschließende Fortführung mit der Steigung:

 

vorgeschlagen. Als zusätzlicher Einflussfaktor wird die Neigung der Rissfortschrittswöhlerlinie „m“ hinzugenommen. Des Weiteren wird der Beginn des Dauerfestigkeitsbereichs gekennzeichnet durch:

 

Einzelnachweise

Bearbeiten
  1. A. Palmgren: Die Lebensdauer von Kugellagern. In: Zeitschrift des Vereins Deutscher Ingenieure. Band 68, Nr. 14, 1924, S. 339–341.
  2. B. F. Langer: Fatigue failure from stress cycles of varying amplitude. In: Journal of Applied Mechanics. Band 59, 1937, S. A160–A162.
  3. M. A. Miner: Cumulative damage in fatigue. In: Journal of applied mechanics. Band 12, Nr. 3, 1945, S. 159–164.
  4. Ngoc Linh Tran: Berechnungsmodell zur vereinfachten Abschätzung des Ermüdungsverhaltens von Federplatten bei Fertigträgerbrücken. Dissertation an der technischen Universität Darmstadt, Darmstadt 2011, S. 35–37. Online (abgerufen am 21. September 2018).
Bearbeiten