Eine Mehrfachpotenzreihe
∑
k
1
≥
0
⋯
∑
k
n
≥
0
a
k
1
,
…
,
k
n
(
z
1
−
z
1
o
)
k
1
⋯
(
z
n
−
z
n
o
)
k
n
{\displaystyle \sum _{k_{1}\geq 0}\cdots \sum _{k_{n}\geq 0}a_{k_{1},\ldots ,k_{n}}(z_{1}-z_{1}^{o})^{k_{1}}\cdots (z_{n}-z_{n}^{o})^{k_{n}}}
lässt sich kurz schreiben als
∑
k
≥
0
a
k
(
z
−
z
o
)
k
{\displaystyle \sum _{{\boldsymbol {k}}\geq 0}a_{\boldsymbol {k}}({\boldsymbol {z}}-{\boldsymbol {z}}^{o})^{\boldsymbol {k}}}
.
Ist
x
∈
R
n
{\displaystyle {\boldsymbol {x}}\in \mathbb {R} ^{n}}
und sind
k
,
m
∈
N
n
{\displaystyle {\boldsymbol {k}},{\boldsymbol {m}}\in \mathbb {N} ^{n}}
, so gilt
D
k
x
m
m
!
=
x
m
−
k
(
m
−
k
)
!
{\displaystyle {\boldsymbol {D}}^{\boldsymbol {k}}{\frac {{\boldsymbol {x}}^{\boldsymbol {m}}}{{\boldsymbol {m}}!}}={\frac {{\boldsymbol {x}}^{{\boldsymbol {m}}-{\boldsymbol {k}}}}{({\boldsymbol {m}}-{\boldsymbol {k}})!}}}
und
D
k
|
x
|
m
m
!
=
|
x
|
m
−
|
k
|
(
m
−
|
k
|
)
!
{\displaystyle {\boldsymbol {D}}^{\boldsymbol {k}}{\frac {|{\boldsymbol {x}}|^{m}}{m!}}={\frac {|{\boldsymbol {x}}|^{m-|{\boldsymbol {k}}|}}{(m-|{\boldsymbol {k}}|)!}}}
.
Für
−
1
<
x
<
1
{\displaystyle -{\boldsymbol {1}}<{\boldsymbol {x}}<{\boldsymbol {1}}}
gilt
∑
|
k
|
≥
0
x
k
=
1
(
1
−
x
)
1
{\displaystyle \sum _{|{\boldsymbol {k}}|\geq 0}{\boldsymbol {x}}^{\boldsymbol {k}}={\frac {1}{({\boldsymbol {1}}-{\boldsymbol {x}})^{\boldsymbol {1}}}}}
, wobei
1
=
(
1
,
…
,
1
)
{\displaystyle {\boldsymbol {1}}=(1,\ldots ,1)}
ist.
Sind
x
,
y
∈
C
n
{\displaystyle {\boldsymbol {x}},{\boldsymbol {y}}\in \mathbb {C} ^{n}}
und ist
m
∈
N
n
{\displaystyle {\boldsymbol {m}}\in \mathbb {N} ^{n}}
, so gilt
(
x
+
y
)
m
=
∑
k
≤
m
(
m
k
)
x
k
y
m
−
k
{\displaystyle ({\boldsymbol {x}}+{\boldsymbol {y}})^{\boldsymbol {m}}=\sum _{{\boldsymbol {k}}\leq {\boldsymbol {m}}}{{\boldsymbol {m}} \choose {\boldsymbol {k}}}{\boldsymbol {x}}^{\boldsymbol {k}}{\boldsymbol {y}}^{{\boldsymbol {m}}-{\boldsymbol {k}}}}
bzw.
(
x
+
y
)
m
m
!
=
∑
k
+
j
=
m
x
k
k
!
y
j
j
!
{\displaystyle {\frac {({\boldsymbol {x}}+{\boldsymbol {y}})^{\boldsymbol {m}}}{{\boldsymbol {m}}!}}=\sum _{{\boldsymbol {k}}+{\boldsymbol {j}}={\boldsymbol {m}}}{\frac {{\boldsymbol {x}}^{\boldsymbol {k}}}{{\boldsymbol {k}}!}}{\frac {{\boldsymbol {y}}^{\boldsymbol {j}}}{{\boldsymbol {j}}!}}}
.
Für
x
=
(
x
1
,
…
,
x
n
)
∈
R
n
{\displaystyle {\boldsymbol {x}}=(x_{1},\ldots ,x_{n})\in \mathbb {R} ^{n}}
und
m
∈
N
{\displaystyle m\in \mathbb {N} }
ist
(
x
1
+
⋯
+
x
n
)
m
=
∑
k
1
+
⋯
+
k
n
=
m
(
m
k
1
,
…
,
k
n
)
x
1
k
1
⋯
x
n
k
n
{\displaystyle (x_{1}+\cdots +x_{n})^{m}=\sum _{k_{1}+\cdots +k_{n}=m}{m \choose k_{1},\ldots ,k_{n}}x_{1}^{k_{1}}\cdots x_{n}^{k_{n}}}
bzw.
(
x
1
+
⋯
+
x
n
)
m
m
!
=
∑
k
1
+
⋯
+
k
n
=
m
x
1
k
1
k
1
!
⋯
x
n
k
n
k
n
!
{\displaystyle {\frac {(x_{1}+\cdots +x_{n})^{m}}{m!}}=\sum _{k_{1}+\cdots +k_{n}=m}{\frac {x_{1}^{k_{1}}}{k_{1}!}}\cdots {\frac {x_{n}^{k_{n}}}{k_{n}!}}}
,
was sich kurz schreiben lässt als
|
x
|
m
m
!
=
∑
|
k
|
=
m
x
k
k
!
{\displaystyle {\frac {|{\boldsymbol {x}}|^{m}}{m!}}=\sum _{|{\boldsymbol {k}}|=m}{\frac {{\boldsymbol {x}}^{\boldsymbol {k}}}{{\boldsymbol {k}}!}}}
.
Ist
m
∈
N
n
{\displaystyle {\boldsymbol {m}}\in \mathbb {N} ^{n}}
und sind
f
,
g
:
R
n
→
R
{\displaystyle f,g\colon \mathbb {R} ^{n}\to \mathbb {R} }
m-mal stetig differenzierbare Funktionen, so gilt
(
f
g
)
(
m
)
=
∑
k
≤
m
(
m
k
)
f
(
k
)
g
(
m
−
k
)
{\displaystyle (fg)^{({\boldsymbol {m}})}=\sum _{{\boldsymbol {k}}\leq {\boldsymbol {m}}}{{\boldsymbol {m}} \choose {\boldsymbol {k}}}f^{({\boldsymbol {k}})}g^{({\boldsymbol {m}}-{\boldsymbol {k}})}}
beziehungsweise
(
f
g
)
(
m
)
m
!
=
∑
k
+
j
=
m
f
(
k
)
k
!
g
(
j
)
j
!
{\displaystyle {\frac {(fg)^{({\boldsymbol {m}})}}{{\boldsymbol {m}}!}}=\sum _{{\boldsymbol {k}}+{\boldsymbol {j}}={\boldsymbol {m}}}{\frac {f^{({\boldsymbol {k}})}}{{\boldsymbol {k}}!}}{\frac {g^{({\boldsymbol {j}})}}{{\boldsymbol {j}}!}}}
.
Diese Identität heißt Leibniz-Regel .
Und sind
f
1
,
…
,
f
n
:
R
→
R
{\displaystyle f_{1},\ldots ,f_{n}\colon \mathbb {R} \to \mathbb {R} }
m-mal stetig differenzierbare Funktionen, so ist
(
f
1
⋯
f
n
)
m
m
!
=
∑
|
k
|
=
m
f
(
k
)
k
!
{\displaystyle {\frac {(f_{1}\cdots f_{n})^{m}}{m!}}=\sum _{|{\boldsymbol {k}}|=m}{\frac {{\boldsymbol {f}}^{({\boldsymbol {k}})}}{{\boldsymbol {k}}!}}}
,
wobei
f
(
k
)
=
(
f
1
,
…
,
f
n
)
(
(
k
1
)
,
…
,
(
k
n
)
)
=
f
1
(
k
1
)
⋯
f
n
(
k
n
)
{\displaystyle {\boldsymbol {f}}^{({\boldsymbol {k}})}=(f_{1},\ldots ,f_{n})^{{\big (}(k_{1}),\ldots ,(k_{n}){\big )}}=f_{1}^{(k_{1})}\cdots f_{n}^{(k_{n})}}
ist.
Für Mehrfachpotenzreihen
f
(
z
)
=
∑
|
ℓ
|
≥
0
a
ℓ
z
ℓ
,
g
(
z
)
=
∑
|
ℓ
|
≥
0
b
ℓ
z
ℓ
{\displaystyle f({\boldsymbol {z}})=\sum _{|{\boldsymbol {\ell }}|\geq 0}a_{\boldsymbol {\ell }}\,{\boldsymbol {z}}^{\boldsymbol {\ell }}\;,\;g({\boldsymbol {z}})=\sum _{|{\boldsymbol {\ell }}|\geq 0}b_{\boldsymbol {\ell }}\,{\boldsymbol {z}}^{\boldsymbol {\ell }}}
gilt
f
(
z
)
g
(
z
)
=
∑
|
ℓ
|
≥
0
(
∑
k
+
j
=
ℓ
a
k
b
j
)
z
ℓ
{\displaystyle f({\boldsymbol {z}})\,g({\boldsymbol {z}})=\sum _{|{\boldsymbol {\ell }}|\geq 0}\left(\sum _{{\boldsymbol {k}}+{\boldsymbol {j}}={\boldsymbol {\ell }}}a_{\boldsymbol {k}}\,b_{\boldsymbol {j}}\right){\boldsymbol {z}}^{\boldsymbol {\ell }}}
.
Sind
f
1
(
z
)
=
∑
ℓ
=
0
∞
a
1
ℓ
z
ℓ
,
…
,
f
n
(
z
)
=
∑
ℓ
=
0
∞
a
n
ℓ
z
ℓ
{\displaystyle f_{1}(z)=\sum _{\ell =0}^{\infty }a_{1\ell }z^{\ell }\;,\;\ldots \;,\;f_{n}(z)=\sum _{\ell =0}^{\infty }a_{n\ell }z^{\ell }}
Potenzreihen einer Veränderlichen, so gilt
f
1
(
z
)
⋯
f
n
(
z
)
=
∑
ℓ
=
0
∞
(
∑
|
k
|
=
ℓ
a
k
)
z
ℓ
{\displaystyle f_{1}(z)\cdots f_{n}(z)=\sum _{\ell =0}^{\infty }\left(\sum _{|{\boldsymbol {k}}|=\ell }a_{\boldsymbol {k}}\right)z^{\ell }}
, wobei
a
k
=
a
1
k
1
⋯
a
n
k
n
{\displaystyle a_{\boldsymbol {k}}=a_{1k_{1}}\cdots a_{nk_{n}}}
ist.
Für
z
=
(
z
1
,
.
.
.
,
z
n
)
∈
C
n
{\displaystyle {\boldsymbol {z}}=(z_{1},...,z_{n})\in \mathbb {C} ^{n}}
gilt
e
z
1
+
.
.
.
+
z
n
=
∑
k
∈
N
0
n
z
k
k
!
{\displaystyle e^{z_{1}+...+z_{n}}=\sum _{{\boldsymbol {k}}\in \mathbb {N} _{0}^{n}}{\frac {{\boldsymbol {z}}^{\boldsymbol {k}}}{{\boldsymbol {k}}!}}}
.
Sind
α
,
x
∈
C
n
{\displaystyle {\boldsymbol {\alpha }},{\boldsymbol {x}}\in \mathbb {C} ^{n}}
und sind alle Komponenten von
x
{\displaystyle {\boldsymbol {x}}}
betragsmäßig
<
1
{\displaystyle <1\,}
, so gilt
(
1
+
x
)
α
=
∑
|
k
|
≥
0
(
α
k
)
x
k
{\displaystyle ({\boldsymbol {1}}+{\boldsymbol {x}})^{\boldsymbol {\alpha }}=\sum _{|{\boldsymbol {k}}|\geq 0}{{\boldsymbol {\alpha }} \choose {\boldsymbol {k}}}\,{\boldsymbol {x}}^{\boldsymbol {k}}}
.
Ist
m
∈
N
n
{\displaystyle {\boldsymbol {m}}\in \mathbb {N} ^{n}}
und sind
α
,
β
∈
C
n
{\displaystyle {\boldsymbol {\alpha }},{\boldsymbol {\beta }}\in \mathbb {C} ^{n}}
, so gilt
(
α
+
β
m
)
=
∑
k
≤
m
(
α
k
)
(
β
m
−
k
)
=
∑
k
+
j
=
m
(
α
k
)
(
β
j
)
{\displaystyle {{\boldsymbol {\alpha }}+{\boldsymbol {\beta }} \choose {\boldsymbol {m}}}=\sum _{{\boldsymbol {k}}\leq {\boldsymbol {m}}}{{\boldsymbol {\alpha }} \choose {\boldsymbol {k}}}{{\boldsymbol {\beta }} \choose {\boldsymbol {m}}-{\boldsymbol {k}}}=\sum _{{\boldsymbol {k}}+{\boldsymbol {j}}={\boldsymbol {m}}}{{\boldsymbol {\alpha }} \choose {\boldsymbol {k}}}{{\boldsymbol {\beta }} \choose {\boldsymbol {j}}}}
.
Ist
m
∈
N
{\displaystyle m\in \mathbb {N} }
und
α
=
(
α
1
,
.
.
.
,
α
n
)
∈
C
n
{\displaystyle {\boldsymbol {\alpha }}=(\alpha _{1},...,\alpha _{n})\in \mathbb {C} ^{n}}
, so gilt
(
|
α
|
m
)
=
∑
|
k
|
=
m
(
α
k
)
{\displaystyle {|{\boldsymbol {\alpha }}| \choose m}=\sum _{|{\boldsymbol {k}}|=m}{{\boldsymbol {\alpha }} \choose {\boldsymbol {k}}}}
.
In mehreren Veränderlichen
z
1
,
…
,
z
n
{\displaystyle z_{1},\ldots ,z_{n}\,}
lässt sich die cauchysche Integralformel
D
k
f
(
z
1
,
…
,
z
n
)
k
!
=
1
(
2
π
i
)
n
∮
∂
U
n
⋯
∮
∂
U
1
f
(
ξ
1
,
…
,
ξ
n
)
(
ξ
1
−
z
1
)
k
1
+
1
⋯
(
ξ
n
−
z
n
)
k
n
+
1
d
ξ
1
⋯
d
ξ
n
{\displaystyle {\frac {D^{\boldsymbol {k}}f(z_{1},\ldots ,z_{n})}{{\boldsymbol {k}}!}}={\frac {1}{(2\pi i)^{n}}}\oint _{\partial U_{n}}\cdots \oint _{\partial U_{1}}{\frac {f(\xi _{1},\ldots ,\xi _{n})}{(\xi _{1}-z_{1})^{k_{1}+1}\cdots (\xi _{n}-z_{n})^{k_{n}+1}}}d\xi _{1}\cdots d\xi _{n}}
kurz schreiben als
a
k
:=
D
k
f
(
z
)
k
!
=
1
(
2
π
i
)
1
∮
∂
U
f
(
ξ
)
(
ξ
−
z
)
k
+
1
d
ξ
{\displaystyle a_{\boldsymbol {k}}:={\frac {D^{\boldsymbol {k}}f({\boldsymbol {z}})}{{\boldsymbol {k}}!}}={\frac {1}{(2\pi i)^{\boldsymbol {1}}}}\oint _{\partial {\boldsymbol {U}}}{\frac {f({\boldsymbol {\xi }})}{({\boldsymbol {\xi }}-{\boldsymbol {z}})^{{\boldsymbol {k}}+{\boldsymbol {1}}}}}\,{\boldsymbol {d\xi }}}
,
wobei
∂
U
=
∂
U
1
×
⋯
×
∂
U
n
{\displaystyle \partial {\boldsymbol {U}}=\partial U_{1}\times \cdots \times \partial U_{n}}
sein soll. Ebenso gilt die Abschätzung
|
a
k
|
≤
M
r
k
{\displaystyle |a_{\boldsymbol {k}}|\leq {\tfrac {M}{{\boldsymbol {r}}^{\boldsymbol {k}}}}}
, wobei
M
=
max
ξ
∈
∂
U
|
f
(
k
)
|
{\displaystyle \textstyle M=\max _{{\boldsymbol {\xi }}\in \partial {\boldsymbol {U}}}|f({\boldsymbol {k}})|}
ist.
Ist
f
:
R
n
→
R
{\displaystyle f\colon \mathbb {R} ^{n}\to \mathbb {R} }
eine analytische Funktion oder
f
:
C
n
→
C
{\displaystyle f\colon \mathbb {C} ^{n}\to \mathbb {C} }
eine holomorphe Abbildung , so kann man
f
{\displaystyle f}
mit Hilfe eines Entwicklungspunktes
z
0
∈
R
n
{\displaystyle {\boldsymbol {z}}_{0}\in \mathbb {R} ^{n}}
oder
z
0
∈
C
n
{\displaystyle {\boldsymbol {z}}_{0}\in \mathbb {C} ^{n}}
in einer Taylorreihe
f
(
z
)
=
∑
k
∈
N
0
n
D
k
f
(
z
0
)
k
!
(
z
−
z
0
)
k
{\displaystyle f({\boldsymbol {z}})=\sum _{{\boldsymbol {k}}\in \mathbb {N} _{0}^{n}}{\frac {D^{\boldsymbol {k}}f({\boldsymbol {z}}_{0})}{{\boldsymbol {k}}!}}({\boldsymbol {z}}-{\boldsymbol {z}}_{0})^{\boldsymbol {k}}}
darstellen.
Für
x
,
y
∈
C
{\displaystyle x,y\in \mathbb {C} }
mit
x
≠
0
{\displaystyle x\neq 0}
und
a
=
(
a
1
,
.
.
.
,
a
n
)
∈
C
n
{\displaystyle {\boldsymbol {a}}=(a_{1},...,a_{n})\in \mathbb {C} ^{n}}
gilt
(
x
+
y
)
n
=
∑
0
≤
k
≤
1
x
(
x
+
a
⋅
k
)
|
k
|
−
1
(
y
−
a
⋅
k
)
n
−
|
k
|
{\displaystyle (x+y)^{n}=\sum _{{\boldsymbol {0}}\leq {\boldsymbol {k}}\leq {\boldsymbol {1}}}x\,(x+{\boldsymbol {a}}\cdot {\boldsymbol {k}})^{|{\boldsymbol {k}}|-1}\,(y-{\boldsymbol {a}}\cdot {\boldsymbol {k}})^{n-|{\boldsymbol {k}}|}}
.
Dies verallgemeinert die Abelsche Identität
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
(
x
+
a
k
)
k
−
1
(
y
−
a
k
)
n
−
k
{\displaystyle (x+y)^{n}=\sum _{k=0}^{n}{n \choose k}\,x\,(x+ak)^{k-1}\,(y-ak)^{n-k}}
.
Letztere erhält man im Fall
a
=
(
a
,
a
,
.
.
.
,
a
)
{\displaystyle {\boldsymbol {a}}=(a,a,...,a)}
.