Eine physikalische Größe ist eine an einem Objekt der Physik quantitativ bestimmbare Eigenschaft eines Vorgangs oder Zustands. Beispiele solcher Größen sind Länge, Masse, Zeit, Stromstärke. Jeder spezielle Wert einer physikalischen Größe (Größenwert) wird als Produkt aus einem Zahlenwert (auch Maßzahl) und einer Maßeinheit angegeben. Vektorielle Größen werden durch Größenwert und Richtung angegeben.
Der Begriff physikalische Größe im heutigen Verständnis wurde von Julius Wallot im Jahr 1922 eingeführt und setzte sich ab 1930 langsam durch. Das führte zu einer begrifflich klaren Unterscheidung zwischen Größengleichungen, Zahlenwertgleichungen und zugeschnittenen Größengleichungen (siehe Zahlenwertgleichung). Eine Größengleichung ist die mathematische Darstellung eines physikalischen Gesetzes, das Zustände eines physikalischen Systems und deren Änderungen beschreibt. Sie stellt den dabei geltenden Zusammenhang zwischen verschiedenen physikalischen Größen dar, wobei in der Regel für jede dieser Größen ein Formelzeichen steht. Größengleichungen gelten unabhängig von den gewählten Maßeinheiten.